Evaluating ML Model

« Ciritical fo evaluate how model perform on unseen data

Below steps are used for model evaluation

« Train the model using 80% of the dataset

Keep 20% of the data as unseen test data

Use the trained model o make predictions on test data

Compare predictions with actual values

Compute evaluation metrics to assess model performance
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Regression
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Metrics
MSE (RMSE)

Mean Squared Error
« Average Squared difference between predicted vs actual value

LIS,
+  Formulae: Z(yanyp)

« Sensitive to large error

MAE

« Mean absolute error

« Average of absolute error between predicted vs actual value

« Formulae: —Zlyan_ypl

 If median is used instead of mean then its Median Absolute error

R — Squared

« Coefficient of determination

° . e Z(ya _37;)2
Formulae: 1 Sy —y0)?

« 1 =» Perfect prediction, O = No better than mean, -1 = Worse than mean
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Classification
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Confusion Matrix

« Table that summarizes how well a classification model performs
by comparing Actual vs Predicted label

* For binary classification

Actual Positive
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Actual Negative
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Classification
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Other Metrics

Accuracy

« QOverall Correctness
« (TP+TN) /(TP + TN + FP + FN)

Precision

« Out of predicted positive how many were correct ¢
» TP /(PSS

Recall (Sensitivity)

« Out of actual positive how many did we catch ¢
« TP/ (TP + FN)

Specificity
+ TN/ (TN +FP)

F1 Score
« 2 *precision *recall / (precision + recall)
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Why It matters

Shows where the model is making error beyond the accuracy
Accuracy itself is useless for imbalance class.
Example: Disease test where 5% of patient are infected. Predicting everyone
healthy gives 95% accuracy but misses all patients
Helps in problem specific optimization:
« Medical Diagnostic: Reduce FN is critical (Don't miss sick patient) [Recall]
« Spam Detection: Reducing FP is critical (Don’t block genuine mail) [Precision]
« Credit Fraud: FN & FP crifical (No loss vs customer card not block) [F1 Score]
« Rain Prediction: FN (Farmer may lose crop) or FP (Trip Cancellation)

« Security System for terrorist fact detection: FN critical
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