
sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

KMeans Clustering

• Find distinct groups (cluster within the data)

Algorithm

1. Randomly select k centroids

2. Assign each data point to nearest centroid

3. Calculate new centroid by assignment

4. Repeat 2 – 3 until no longer change or maximum iteration

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Data Points

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Choose Centroid

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Assign Member

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Calculate Centroid

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Re-assign Member

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Calculate Centroid

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Re-assign Member

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Clusters Found

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Python Code
from sklearn.cluster import KMeans

from sklearn import datasets

import matplotlib.pyplot as plt

X = datasets.load_iris().data

kmc = KMeans(n_clusters=3)

kmc.fit(X)

labels = kmc.predict(X)

Scatter plot of any two variables(features)

plt.scatter(X[:, 0], X[:, 2], c=labels)

Display centroid of trained models

centroids = kmc.cluster_centers_

Plot of centroid along with data

plt.scatter(centroids[:, 0], centroids[:, 2], marker="*", s=150, facecolors="none",

 edgecolors="red", linewidths=2, label="Centroids",)

plt.show()

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

What is Best K ?

• Inertia measure (WCSS) is used for determining optimum value of K

• WCSS ➔ Within Cluster Sum of Squares

• Gives info on spread calculating the distance of sample from centroid

• With increase in value of k, inertia decrease

• Good cluster has low inertia but not too many clusters

• Plot of inertia vs Number of cluster is done

• Rule of Thumb: Choose elbow in a plot

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Python Code
from sklearn.cluster import KMeans

from sklearn import datasets

import matplotlib.pyplot as plt

X = datasets.load_iris().data

k_list = range(1, 10)

wcss = []

for k_value in k_list:

 kmc = KMeans(n_clusters=k_value)

 kmc.fit(X)

 wcss.append(kmc.inertia_)

Plot of k vs inertia

plt.plot(k_list, wcss, "-o")

plt.xlabel("Number of clusters K")

plt.ylabel("Inertia / WCSS")

plt.title("WCSS VS Number of clusters")

plt.xticks(k_list)

plt.show()

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

PCA
• Principle Component Analysis

• Dimension Reduction Technique

• Rotates the data to Align with highest variance

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Variance vs PCA
from sklearn.datasets import load_iris

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import pandas as pd

Load and standardize data

iris = load_iris()

X = iris.data

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Run PCA with all 4 components

pca = PCA(n_components=4)

X_pca = pca.fit_transform(X_scaled)

Create DataFrame of variance explained

explained_var = pd.DataFrame({

 "Principal Component": [f"PC{i+1}" for i in range(4)],

 "Variance Explained Ratio": pca.explained_variance_ratio_,

 "Cumulative Variance": pca.explained_variance_ratio_.cumsum(),})

print(explained_var)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

NLP

• Natural Language Processing

• Intersection of computer science, linguistics, and AI

• Enables machines to understand, interpret & generate human language

• NLP helps us to preprocess, clean, analyze & extract insight from text

• Use Case: Chat Bot, Language Translation, Spam Detection etc..

• Done with library nltk (pip install nltk) Natural Language Tool Kit

• nltk provides tools for tokenization, stop word removal, stemming,

lemmatization, POS tagging and more

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Tokenization

• Process in which piece of text is split into smaller meaningful units

• Tokens could be words, subwords, characters, or even sentences

• Tokens depends on the type of tokenization

Python Code
import nltk

from nltk.tokenize import word_tokenize # sent_tokenize

nltk.download("punkt")

nltk.download("punkt_tab")

text = "NLTK is a great toolkit for working with text."

tokens = word_tokenize(text)

print(tokens)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Pre-Processing

• Before analyzing text, it must be pre-processed. Steps include

1. Lowercasing

2. Removing Punctuation / Number

3. Removing stop words

4. Tokenizing text

import string

sample_text = "Text Mining in Python, is FUN and powerful!!"

text = sample_text.lower() # Lowercase

text = text.translate(str.maketrans('', '', string.punctuation)) # Remove punctuation

tokens = nltk.word_tokenize(text) # Tokenize

print(tokens)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Regex Cleaning

• There could be pattern of data that is present in text but not relevant for

understanding data

• We can make use of regex to clean these data

import re

text = "Contact us at support@example.com or visit https://example.com"

Remove email

clean_text = re.sub(r"\S+@\S+", "", text)

Remove URL

clean_text = re.sub(r"http\S+", "", clean_text)

print(clean_text)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Stop words
• Common words that are typically filtered out from text before processing

• Don’t carry much meaningful information for many NLP tasks.

• So frequent that they are irrelevant to understand meaning of the text

• Example: Articles, Pre-position, conjunction, pronoun, aux verb

• the, is, in, an, and, etc.

Python Code
import nltk

from nltk.corpus import stopwords

nltk.download("stopwords")

nltk.download("wordnet")

print("Stopwords in English:", stopwords.words("english")[:20])

filtered = [w for w in tokens if w not in stopwords.words("english")]

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Stemming

• Refers to reducing word to their root form

• Root of Play, Played, Playing, Plays ➔ Play

• Its rule based and may produce non words

Python Code
from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

words = ["playing", "played", "plays ", " happily"]

print([stemmer.stem(w) for w in words])

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

POS Tagging
• Part of Speech (POS) is labelling each text with grammatic category

import nltk

Download required resources (only once)

nltk.download("punkt")

nltk.download("averaged_perceptron_tagger")

Sample text

text = "Apple is launching a new iPhone next month, and many customers are excited."

Step 1: Tokenize the text into words

tokens = nltk.word_tokenize(text)

Step 2: Perform POS tagging

pos_tags = nltk.pos_tag(tokens)

print("POS Tags:")

print(pos_tags)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

TF-IDF & Cosine Similarity

Vector Space Model

• Goal: Represent text documents numerically to measure similarity

• Bag of Words: Treat document as bag of words order ignored but frequency matters

• Vector Form V = {t1, t2 ... tm}. i.e. weight of words in vocabulary

• TF – IDF : Weighting scheme that balances terms importance within document (TF) and

across corpus (IDF)

Term Frequency (TF): Count of a term (word) in a document

Inverse Document Frequency (IDF):

• If there are N document with k document having term t then IDF = log(N/k)

• Highlights discriminative terms removing biasing toward common term

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

import numpy as np; import pandas as pd; import re’ from collections import Counter

docs = {"D1": "The cat sat on the mat", "D2": "The dog sat on the log", "D3": "Cats and dogs play together", "D4": "My cat likes to play on the mat",}

STOP = {"the", "on", "and", "to", "my"}

LEMMAS = {"cats": "cat", "dogs": "dog", "likes": "like"}

def preprocess(text):

 text = text.lower()

 text = re.sub(r"[^a-z\s]", " ", text) # keep letters and spaces only

 tokens = [w for w in text.split() if w and w not in STOP]

 tokens = [LEMMAS.get(w, w) for w in tokens]

 return tokens

tokens = {k: preprocess(v) for k, v in docs.items()}

vocab = sorted({w for ts in tokens.values() for w in ts})

def tf_vector(tok_list, vocab):

 c = Counter(tok_list)

 return np.array([c.get(t, 0) for t in vocab], dtype=float)

TF = {k: tf_vector(ts, vocab) for k, ts in tokens.items()}

def find_cosine_similarity(vec_a, vec_b):

 dot_product = vec_a @ vec_b

 mag_a = np.sqrt(np.sum(vec_a**2))

 mag_b = np.sqrt(np.sum(vec_b**2))

 return dot_product / (mag_a * mag_b) if mag_a > 0 and mag_b > 0 else 0.0

def get_similar_document(doc_key):

 similarities = []

 vector_doc = TF.pop(doc_key)

 for doc, vector in TF.items():

 similarity_score = find_cosine_similarity(vector_doc, vector)

 similarities.append((doc, similarity_score))

 most_similar_doc, max_score = max(similarities, key=lambda x: x[1])

 return most_similar_doc, max_score

print("Most similar to D4:", get_similar_document("D4"))

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

Library
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

import nltk

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

--- Existing corpus ---

documents = []

Preprocessing

stop_words = set(stopwords.words('english'))

lemmatizer = WordNetLemmatizer()

def preprocess(text):

 tokens = nltk.word_tokenize(text.lower())

 tokens = [lemmatizer.lemmatize(t) for t in tokens if t.isalpha() and t not in stop_words]

 return " ".join(tokens)

processed_docs = [preprocess(doc) for doc in documents]

--- Fit TF-IDF vectorizer on existing corpus ---

vectorizer = TfidfVectorizer(lowercase=True, stop_words=‘english’, max_features=5000)

tfidf_matrix = vectorizer.fit_transform(processed_docs)

--- New document ---

new_doc = "Neural networks are a core part of deep learning."

processed_new_doc = preprocess(new_doc)

new_vec = vectorizer.transform([processed_new_doc]) # transform only, do NOT fit again

--- Compute similarity with existing corpus ---

similarities = cosine_similarity(new_vec, tfidf_matrix) # shape: (1, num_docs)

similarities = similarities.flatten() # convert to 1D array

--- Find the most similar existing document ---

most_similar_index = similarities.argmax()

print("Similarity score:", similarities[most_similar_index])

print("Most similar document:", documents[most_similar_index])

https://sapkotarabindra.com.np/

	Slide 1: KMeans Clustering
	Slide 2: Data Points
	Slide 3: Choose Centroid
	Slide 4: Assign Member
	Slide 5: Calculate Centroid
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: PCA
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

