KMeans Clustering

« Find distinct groups (cluster within the data)

Algorithm
1. Randomly select k centroids
Assign each data point to nearest centroid

Calculate new centroid by assignment

e

Repeat 2 — 3 until no longer change or maximum iteration

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Data Points

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Choose Centroid

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

AssIgn Member

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Calculate Centroid

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Re-assign Member

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Calculate Centroid

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Re-assign Member

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Clusters Found

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Python Code

from sklearn.cluster import KMeans
from sklearn import datasets
import matplotlib.pyplot as plt

X = datasets.load_iris().data
kmc = KMeans(n_clusters=3)
kmc fit(X)

labels = kmc.predict(X)

Scatter plot of any two variables(features)
plt.scatter(X[:, O], X[:, 2], c=labels)

Display centroid of trained models
centroids = kmc.cluster_centers_

Plot of cenftroid along with data
plt.scatter(centroids|:, O], centroids|:, 2], marker="*", s=150, facecolors="none",
edgecolors="red", linewidths=2, label="Cenftroids",)

plt.show()
© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

What is Best K ¢

Inertia measure (WCSS) Is used for determining optimum value of K
WCSS = Within Cluster Sum of Squares

Gives info on spread calculating the distance of sample from centroid
With increase in value of k, inertia decrease

Good cluster has low inertia but not too many clusters

Plot of inertia vs Number of cluster is done

Rule of Thumb: Choose elbow In a plot

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Python Code

from sklearn.cluster import KMeans
from sklearn import datasets
import matplotlib.pyplot as plt

X = datasets.load_iris().data
k_list = range(1, 10)
WCSS = []

for k_value in k_list:
kmc = KMeans(n_clusters=k_value)
kmc.fit(X)
wcss.append(kmc.inertia_)

Plot of k vs inertia

plt.plot(k_list, wcss, "-0")
plt.xlabel("Number of clusters K")
plt.ylabel("Inertia / WCSS")

plt.title ("WCSS VS Number of clusters’)
plt.xticks(k_list)

plt.show() © Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

PCA

* Principle Component Analysis
* Dimension Reduction Technigue

« Rotates the data to Align with highest variance

Bk ofarabindra.com.np

https://sapkotarabindra.com.np/

«= [
® setosa

® vyersicolor
® virginica

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Variance vs PCA

from sklearn.datasets import load_iris

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

import pandas as pd

Load and standardize data

iris = load_iris()

X =iris.data

scaler = StandardScaler()
X_scaled = scaler fit_transform(X)

Run PCA with all 4 components
pca = PCA(n_components=4)
X_pca = pca.fit_transform(X_scaled)

Create DataFrame of variance explained

explained_var = pd.DataFrame ({
"Principal Component": [f"PC{i+1}" foriin range(4)],
"Variance Explained Ratio": pca.explained_variance_ratio_,
"Cumulative Variance": pca.explained_variance_ratio_.cumsum().})

print(explained_var)
© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

NLP

Natural Language Processing

Intersection of computer science, linguistics, and Al

Enables machines 1o understand, interpret & generate human language
NLP helps us to preprocess, clean, analyze & exiract insight from text

Use Case: Chat Bot, Language Translation, Spam Detection etc..

Done with library nltk (pip install nltk) Natural Language Tool Kif

nitk provides tools for tokenization, stop word removal, stemming,

lemmatization, POS tagging and more

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Tokenization

* Process in which piece of text is split info smaller meaningful units
« Tokens could be words, subwords, characters, or even sentences

« Tokens depends on the type of tokenization

Python Code

import nltk
from nltk.tokenize import word_tokenize # sent_tokenize

nltk.download("punkt”)
nltk.download("punki_tab")

text = "NLTK is a great toolkit for working with text."
tokens = word_tokenize (text)
print(tokens)

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Pre-Processing

« Before analyzing text, it must be pre-processed. Steps include

Lowercasing

Removing Punctuation / Number
Removing stop words

Tokenizing text

e D —

import string

sample_text = "Text Mining in Python, is FUN and powerfull!l"

text = sample_text.lower() # Lowercase

text = text.translate(str.maketrans(”, ", string.punctuation)) # Remove punctuation

tokens = nltk.word_tokenize (text) # Tokenize
print(tokens)

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Regex Cleaning

« There could be pattern of data that is present in text but not relevant for
understanding data

« We can make use of regex to clean these data

import re
text = "Contact us at support@example.com or visit https://example.com”

Remove email
clean_text = re.sub(r\S+@\S+", ™, text)

, Clean_text)

print(clean_text)

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Stop words

« Common words that are typically filtered out from text before processing
« Don’t carry much meaningful information for many NLP tasks.

« So frequent that they are irrelevant to understand meaning of the text

« Example: Articles, Pre-position, conjunction, pronoun, aux verp

« the, is, in, an, and, etc.

Python Code

import nltk
from nltk.corpus import stopwords

nltk.download("'stopwords")
nltk.download("'wordnet")

print("Stopwords in English:", stopwords.words("english")[:20])
filtered = [w for w in fokens if w ot ires IOEMIRIGRV SISk SREIEINILP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Stemming

« Refers to reducing word to their root form
« Root of Play, Played, Playing, Plays = Play

« [ts rule based and may produce non words

Python Code

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()

words = ['playing”, "played”, "plays ", " happily"]
print([stemmer.stem(w) for w in words])

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

POS Tagging

« Part of Speech (POS) is labelling each text with grammatic category

import nltk

Download required resources (only once)
nitk.download("punkt")
nitk.download("'averaged_perceptron_tagger")

Sample text
text = "Apple is launching a new iPhone next month, and many customers are excited.”

Step 1: Tokenize the text into words
tokens = nltk.word_tokenize (text)

Step 2: Perform POS tagging
pos_tags = nltk.pos_tag(tokens)

print("POS Tags:")
print(pos_tags)

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

TF-IDF & Cosine Similarity

Vector Space Model
« Goal: Represent text documents numerically to measure similarity

« Bag of Words: Treat document as bag of words order ignored but frequency matters
« Vector Form V = {t1, 12 ... tm}. i.e. weight of words in vocabulary

- TF-IDF : Weighting scheme that balances ferms importance within document (TF) and
across corpus (IDF)

Term Frequency (TF): Count of a term (word) in a document
Inverse Document Frequency (IDF):
« If there are N document with k document having term t then IDF = log(N/k)

« Highlights discriminative terms removing biasing foward common term
© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

import numpy as np; import pandas as pd; import re' from collections import Counter

docs = {"D1": "The cat sat on the mat", "D2": "The dog sat on the log", "D3": "Cats and dogs play together", "D4": "My cat likes to play on the mat"}

STOP = {IIThell’ llonll, IIOndHI IITOII, ”my”}
LEMMAS = {'cats": "cat", "dogs": "dog", "likes": "like"}

def preprocess(text):
text = text.lower()
fext =re.sub(r'[Aa-z\s]", " ", text) # keep letters and spaces only
tfokens = [w for w in text.split() if w and w not in STOP]
tokens = [LEMMAS.get(w, w) for w in tokens]
return tokens

tokens = {k: preprocess(v) for k, v in docs.items()}
vocab = sorted({w for fs in tokens.values() for w in ts})

def tf_vector(tok_list, vocab):
c = Counter(tok_list)
return np.array([c.get(t, O) for t in vocab], ditype=float)

TF = {k: tf_vector(ts, vocab) for k, ts in tokens.items()}

def find_cosine_similarity(vec_a, vec_b):
dotf_product = vec_a @ vec_b
mag_a = np.sgrt(np.sum(vec_a**2))
mag_b = np.sgrt(np.sum(vec_b**2))
return dot_product / (mag_a * mag_b) if mag_a >0 and mag_b > 0 else 0.0

def get_similar_document(doc_key):
similarities = []
vector_doc = TF.pop(doc_key)
for doc, vector in TF.items():
similarity_score = find_cosine_similarity(vector_doc, vector)
similarities.append((doc, similarity_score))

most_similar_doc, max_score = max(similarities, key=lambda x: x[1])
return most_similar_doc, max_score

print("Most similar fo D4:", get_similar_document('D4"))

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Library

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import nltk

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

--- Existing corpus ---
documents =[]

Preprocessing
stop_words = set(stopwords.words(‘english'))
lemmatizer = WordNetLemmatizer()

def preprocess(text):
tokens = nltk.word_tokenize (text.lower())
tokens = [lemmatizer.lemmatize (1) for tin tokens if t.isalpha() and t not in stop_words]
return " ".join(tokens)

processed_docs = [preprocess(doc) for doc in documents]

--- Fit TF-IDF vectorizer on existing corpus ---
vectorizer = TfidfVectorizer(lowercase=True, stop_words=‘english’, max_features=5000)
tfidf_matrix = vectorizer.fit_transform(processed_docs)

--- New document ---

new_doc = "Neural networks are a core part of deep learning."

processed_new_doc = preprocess(new_doc)

new_vec = vectorizer.transform([processed_new_doc]) # transform only, do NOT fit again

--- Compute similarity with existing corpus ---
similarities = cosine_similarity (new_vec, tfidf_matrix) # shape: (1, num_docs)
similarities = similarities.flatten() # convert to 1D array

--- Find the most similar existing document ---
most_similar_index = similarities.argmax()

print("Similarity score:", similarities[most_similar_index])
print("Most similar document:"”, documents[most_similar_index])

© Rabindra Sapkota | NLP with Python Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

	Slide 1: KMeans Clustering
	Slide 2: Data Points
	Slide 3: Choose Centroid
	Slide 4: Assign Member
	Slide 5: Calculate Centroid
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: PCA
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

