
sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

NumPy

• Stands for Numeric Python

• Used for Scientific Computing, Data Analysis, Machine Learning

and Image Processing

• We can think 2-D list like a matrix. For 3-D, think like a cube

• Main component is n-d array of same data type

• Faster than Python List

• Provides operation for Fourier Transform, Matrix & Linear Algebra

• Arithmetic operation are element wise

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Create Array
• Can be created from existing list or NumPy function

• Example:

• list_a = [1, 2, 5, 10] # check for mixed data type

• arr_1 = np.array(list_a) or arr_1 = np.asarray(list_a, dtype=np.float64)

• print(arr_1.shape) # Prints shape of array

• print(arr_1.ndim) # Prints dimension of array

• print(arr_1.dtype) # Prints data type of array element

• print(np.floor(arr_1)) # Converts each element to floor value

• print(np.ceil(arr_1)) # Converts each element to ceiling value

• print(np.round(arr_1, 2)) # Rounds each element of array

• len, join are valid

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Indexing

• Accessing element in NumPy array is same as that of list

• In higher order array we can use , separated notation as well

• Example:

• single_array = np.array((4, 12, 7, 8, 10))
• print(single_array[2])

• nd_array = np.asarray([[1, 2, 3], [2, 3, 4], [3, 3, 1]])
• print(nd_array[0][1]) # 2nd element of 1st array

• print(nd_array[0, 1]) # 2nd element of 1st array

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Slicing

• Slicing NumPy array is same as that of list

• Example:

• arr_1d = np.array([1, 4, 6, 7, 8, 10])
• print(arr_1d[1:4])
• print(arr_1d[1:4:2])
• print(arr_1d[:3])
• print(arr_1d[2:])
• print(arr_1d[::-1])

• nd_array = np.array([[1, 2, 3], [2, 3, 4], [3, 3, 1]])
• print(nd_array[0][:2])
• print(nd_array[0, :2])

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Inserting
• For adding element in existing NumPy array

• Example:

• np_arr = np.array([3, 7, 8, 1, 4])
• print(np_arr)
• np_arr2 = np.insert(np_arr, 1, 5)
• print(np_arr)
• print(np_arr2)

• np_2d_arr = np.array([[1, 2], [5, 2]])
• np_2d_arr2 = np.insert(np_2d_arr, 1, [[5, 3], [3, 4]], axis=0)
• print(np_2d_arr2)

• np_2d_arr = np.array([[1, 2, 3], [5, 2, 1]])
• np.insert(np_2d_arr, 1, [4, 7, 4]) # Try this with axis values

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Append

• Add new element at the end

• Example:

• np_arr = np.array([[1, 2], [5,2]])
• np_arr2 = np.append(np_arr, [6, 1, 2])
• print(np_arr2)

• np_arr = np.array([[1, 2], [5,2]])
• np_arr2 = np.append(np_arr, [[5, 3], [3, 4]], axis=1)
• # Try with axis=0 and without axis

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Delete

• Delete data from NumPy array

• Example:

• np_arr = np.array([[1, 2], [5,2]])
• np.delete(np_arr, 1)
• np.delete(np_arr, 1, axis=0)
• np.delete(np_arr, 1, axis=1)

• np_arr = np.array([[[1, 2], [5,2]], [[3, 4], [7,8]]])
• np.delete(np_arr, 1)
• np.delete(np_arr, 1, axis=0)
• np.delete(np_arr, 1, axis=1)
• np.delete(np_arr, 1, axis=2)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Numeric Operator

• Operation are performed element wise in NumPy array

• Supports operators like: + , - , /, //, **, *, %, @, <, >, ==

• @ ➔ Dot product or we can use np.dot(a_1, a2)

• Example:

• arr_1 = np.array([[1, 2], [3, 4]])

• arr_2 = np.array([[3, 2], [5, 0]])

• arr_1 + arr_2

• arr_1 ** 2 # Broadcasting

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Broadcasting

• Smaller array is broadcasted over the larger one provided

trailing dimension matches (or 1)

• Example:

• x = np.arange(0, 4 * np.pi, 0.1)

• y = np.sin(x) # or np.exp

• arr_1 = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])

• arr_2 = np.array([0, 1, 2]) # np.array([[0], [1], [2]])

• print(arr_1 + arr_2)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Constants & Functions

• NumPy provides constants and functions for common uses

• Some NumPy constants: np.inf, np.nan, np.pi

• Some NumPy functions:

• np.floor, np.ceil, round, sort, np.abs, np.square, np.power

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Aggregate

• np.operation(array) or array.operation()

• sum, mean, min, max, var, std, cumsum, cumprod, argmax, argmin, clip

• median , cov(x,y), quantile(q), ptp, average(a, weights=w)

• Example:

• np_arr = np.array([[1, 4, 2], [2, 6, 1]])

• np.sum(np_arr) # Try with axis option

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Filtering
• Used when we want to select element based on condition

• Result will be 1-D array

• We can combine condition with &, | and ~

• Example:

• np_arr = np.array([[1, 2, 3], [2, 3, 5], [1, 3, 4], [2, 5, 1]])

• np_filtered = np_arr[(np_arr > 2) | (np_arr < -2)]

• np_arr[np_arr > 0].mean()

• np_arr[np_arr < 0] = 0

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

where

• Unlike filter where returns indices where the condition is True.

(Filter gives data)

• Usefult on simulating if else behavior

• np.where(mat_a < q1, q1, mat_a)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Select

• Categorize data based on multiple condition at once

• Doesn’t require loop

import numpy as np

arr = np.array([5, 10, 12, 19, 20, 24, 30])

conditions = [arr < 13, (arr >= 13) & (arr < 20), arr >= 20]
choices = ["Child", "Teen", "Adult"]

categories = np.select(conditions, choices, default="Unknown")
print(categories)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Exercise

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Generate data
• np_zero_array = np.zeros((2, 5))

• one_array = np.ones((3,6), dtype=int)

• full_array = np.full((3,6), 5, dtype=int)

• lin_array = np.linspace(1, 10, 4)

• log_array = np.logspace(1, 10, 4)

• geom_array = np.geomspace(1, 10, 4)

• range_array = np.arange(3, 9)

• random_array = np.random.random((5,5))

• random_array = np.random.randint(0, 10, size=(10, 10))

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Generate data

• np.random.standard_normal((3,4))

• normal_dist_array = np.random.normal(mu, sigma, size=200)

• identity_array = np.eye(3, dtype=int)

• identity_matrix = np.eye(2, 3, dtype=int)

• identity_array = np.eye(3, k=-1, dtype=int)

• identity_array = np.identity(3, dtype=int)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Re-shape

• For changing shape of array

• Usually (when possible) we convert array into 1D, do all the

operations and convert back to its original shape

• Example:

• single_array = np.arange(10)
• re_shaped_array = np.reshape(single_array, (5,2))
• multi_arr = np.reshape(single_array, (5,2), order=‘F’)

• multi_arr.reshape(10) # vs (1,10)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Re-size
• Same as re-shape but if not compatible fills remaining

position from initial

• If we resize to small shape excess elements will be left out

• Example:

• single_array = np.arange(10)

• resized = np.resize(single_array, (3,3))

• sized_up = np.resize(resized, (4,4))

• sized_up = np.zeros((4,4), dtype=resized.dtype)

• sized_up[:3, :3] = resized

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Flatten

• Returns the copy of array collapsed into 1D

• We can use flatten / reshape / ravel (returns view)

• Example:

• arr = np.array([[1, 2], [3, 4]])

• print(arr)

• fltn = arr.flatten() # Order = ‘F’ optionally

• fltn[0] = 5

• print(fltn)

• print(arr) # Try with Ravel it modifies element

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Transpose

• We can use .T or np.transpose()

• Example:

• arr = np.array([[1,2,3], [4,5,6]])

• arr.T

• np.transpose(arr)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Stack Array

• Add array on top of another array

• Can be done vertically or horizontally

• Example

• arr_1 = np.array([[1, 2, 3], [4, 5, 6]])

• arr_2 = np.array([[7, 8, 9], [10, 11, 12]])

• np.hstack((arr_1, arr_2))

• np.vstack((arr_1, arr_2))

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Concatenation

• Combine two array

• Example:

• arr_1 = np.array([[1, 2, 3], [4, 5, 6]])

• arr_2 = np.array([[7, 8, 9], [10, 11, 12]])

• np.concatenate((arr_1, arr_2))

• np.concatenate((arr_1, arr_2), axis=1)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Copy Array

• Slicing array and making change on it affects original array

• We need to copy array and then later perform operation

• Example:

• np_ar1 = np.array([[4,0, 32], [3,12, 59]])

• sub_arr = np_ar1[:,1:]

• sub_arr[0, 0] = 29

• print(sub_arr)

• print(np_ar1)

• sub_arr = np.copy(np_ar1[:,1:]) # Correct way

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Data Type

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Matrix
• We have function for dot product, determinant, transpose,

eigen value, solving linear equations, QR decomposition etc.

• Example:
• mat_a = np.array([[12, 20, 13], [15, 74, 81], [54, 18, 95]])

• mat_a.T

• np.linalg.det(mat_a)

• np.linalg.inv(mat_a)

• np.trace(mat_a)

• np.linalg.eig(mat_a)

• np.linalg.qr(mat_a)

• np.linalg.solve(A, b) # For solving equation Ax=b

• np.cross # For cross product

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Read File

data = np.genfromtxt("Basketball player.txt"
 , delimiter=","
 , dtype=None
 ,encoding="utf-8"
)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | NumPy Slides| sapkotarabindra.com.np

Exercise

https://sapkotarabindra.com.np/

	Slide 1: NumPy
	Slide 2: Create Array
	Slide 3: Indexing
	Slide 4: Slicing
	Slide 5: Inserting
	Slide 6: Append
	Slide 7: Delete
	Slide 8: Numeric Operator
	Slide 9: Broadcasting
	Slide 10: Constants & Functions
	Slide 11: Aggregate
	Slide 12: Filtering
	Slide 13: where
	Slide 14: Select
	Slide 15
	Slide 16: Generate data
	Slide 17: Generate data
	Slide 18: Re-shape
	Slide 19: Re-size
	Slide 20: Flatten
	Slide 21: Transpose
	Slide 22: Stack Array
	Slide 23: Concatenation
	Slide 24: Copy Array
	Slide 25: Data Type
	Slide 26: Matrix
	Slide 27: Read File
	Slide 28: Exercise

