
sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

Prompt Engineering

• Craft of writing clear, targeted instructions for large language models

(LLMs) so they produce the responses you actually want.

• Why it matters: Strong prompts save time, reduce errors, and turn a

general-purpose model into a focused assistant for your task (e.g.,

summarizing, brainstorming, analyzing).

• How it works in chat apps: You write messages that: set the role/persona,

give context, state the task, and specify the format/length of the output.

• Simple analogy: Think of it like a recipe—good ingredients (context) and

clear steps (instructions) yield reliable results.

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Action verbs: Start with direct verbs like “Write, Explain, Summarize, Extract,

Classify, Evaluate.” Avoid vague verbs like “Understand,” “Think,” or “Try.”

• Specific instructions: Mention audience, tone, depth, length, and format

(e.g., bullets, table, checklist).

• Delimiters for input: Use clear markers to separate your instructions from the

content (e.g., triple backticks ``` or quotes).

• Length control (in the app): Ask for limits in words, sentences, or bullets to

keep outputs crisp and complete

Principle of Clear Prompt

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Explain ‘prompt engineering’ to a non-technical audience in 3 sentences.

Use a friendly, concise tone.

• Summarize the text between triple backticks in at most 4 bullet points,

focusing on key takeaways. ```{your_text}```

• Describe the behavior of Golden Retrievers in one short paragraph for a

family considering a pet.

Sample Prompt

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Be explicit: Tell the model the exact output structure you want: table, bullets, numbered list, or a

structured paragraph with headings.

• Name the fields: If asking for lists or tables, specify the fields/columns and quantity (e.g., “5 items”).

Examples:

• List 5 must-see cities as an unordered list.

• Provide a structured paragraph with clear headings and subheadings on the benefits of regular

exercise.

• Create a two-column table of 5 action movies I should watch with ‘Title’ and ‘Rating’ (no extra

commentary).

• Generate the following custom format for the story below:

Text: <original>

Title: <generated> Use the text: {your_text}

Output & Formatting

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Conditional rules: Add simple logic to keep outputs on track (e.g., language checks,

keyword checks).

• Role-playing: Assign a persona to control tone and content focus (e.g., “expert financial

analyst,” “support agent,” “tech journalist”).

Examples:
• You will be given text between triple backticks. If it’s in English, suggest a title. Otherwise,

reply: ‘I only understand English.’ ```{}```

• You are a seasoned technology journalist known for in-depth research and balanced

analysis. Explain the impact of AI on job markets in a brief, structured overview.

• Act as a gentle customer support agent. If the question is not about our products, reply: ‘I

can help with product questions only.’ Now answer: ```What app features do you offer?```

Conditional & Role Based

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• When to use: To teach the model your desired style or label definitions by giving one or

more examples.

• Design tip: Make examples short, diverse, and representative of edge cases.

Examples:

• Q: Sum the numbers 3, 5, and 6.

 A: 14

 Q: Sum the numbers 2, 4, and 7.

 A:

• Text: Today the weather is fantastic -> Classification: positive

 Text: The furniture is small -> Classification: neutral

 Text: I don’t like your attitude -> Classification: negative

 Text: That shot selection was awful -> Classification:

One Shot and Few Shots

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Multi-step: Tell the model exactly what to do in order. This improves completeness.

• Self-consistency idea: Ask for multiple brief answers/approaches and choose the one that
appears most consistent.

Examples:

• Compose a travel blog as follows:

 Step 1: Introduce the destination.

 Step 2: Share two personal adventures.

 Step 3: Conclude with 2–3 key lessons learned.

• Provide 3 different concise answers to this question, each with a short justification. Then

give a final single-sentence conclusion based on the majority: ```{your_questions}```

• Check a solution in two steps:

 1. Identify any errors.

 2. Note missing edge-case handling (e.g., division by zero).

 Solution: ```{your_solution}```

Multi-Step & Reason Friendly

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

Summary

Type What it does Best for Short example prompt

Zero-shot
No examples; just

instructions
Fast, general tasks “Summarize this in 3 bullets.”

One/few-

shot

Include one or more

examples
Style/format consistency “Q: … A: … Now answer: …”

Multi-step Breaks a task into steps
Complex or sequential

tasks

“Do Step 1…, then Step 2…, then Step

3…”

Conditional Adds simple IF/ELSE rules Guardrails, routing
“If text is not English, reply ‘I only

understand English.’”

Role-

playing
Assigns a persona

Tone and domain

control

“Act as a calm customer support

agent…”

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Summarize the review between triple backticks in 3 sentences focusing on user

experience and key features.```{your_text}```

• Expand the bullet list between triple backticks into two concise sentences with a

professional tone. ```{your_text}```

• Translate the English paragraph between triple backticks into French. ```{your_text}```

• Rewrite the text between triple backticks for a non-technical audience. Keep it to 2–3

sentences. ```{your_text}```

• Proofread and lightly improve clarity, preserving the original meaning. Return the result

only

Summarize, Expand, Transform

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Classification: Specify labels and output format.

• Emotions/multiple labels: Limit the number of labels to avoid over-generation.

• Entity extraction: Name the exact entities and the format you want.

Examples
• Classify the sentiment (positive, neutral, negative) of the text between triple backticks.

Answer with one word only. ```{your_text}```

• Identify up to 3 emotions in the text between triple backticks. Return a comma-separated

list of single words. ```{your_text}```

• Extract these entities from the text: Product Name, Display Size, Camera Resolution. Return

as:
 - Product Name:
 - Display Size:

 - Camera Resolution:

 Text: ```{your_text}```

Text Analysis Prompt

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Code generation: Describe the problem, language, and output format

(script, function, or class). Keep it concise.

• Code explanation: Ask for a one-sentence or high-level explanation

without internal reasoning.

Example

• Write a Python function that receives a list of quarterly sales and returns the

average sales per quarter. Include a short docstring.

• In one sentence, explain what the following code does (return only the

explanation): ```{your_code}```

• Rewrite this script to validate inputs are positive numbers and prompt the

user again if not. Keep the script minimal and readable. ```{your_code}```

Code Generation

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

1. Open the chat: Go to your chat app and start a new conversation for a clean context.

2. Paste a prompt: Choose any sample prompt above and paste it into the message box.

3. Insert your content: Where you see {your_text}, paste your actual text or code.

4. Set expectations: If needed, add audience, tone, length, and format requirements (e.g.,

“non-technical audience, 3 bullets, <120 words”).

5. Review the output: Check for accuracy, clarity, and completeness.

6. Refine and rerun: If it’s not quite right, add more detail, examples, or steps, and try again.

Tip: For consistent results, keep each chat focused on a single project or topic

How to run these?

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

• Clarity: Use direct verbs and avoid vague terms. Be explicit about output format and length.

• Context: Provide only the necessary context. Use clear delimiters for pasted text.

• Structure: Prefer bullets, lists, or templates for predictable outputs.

• Guardrails: Add simple conditions (e.g., language checks, out-of-scope replies) to keep

answers relevant.

• Examples: Use one/few-shot examples to teach style and labels; include edge cases.

• Iteration: Prompts improve with refinement; test, observe, and tweak.

• Verification: Always review outputs—especially translations, summaries, and generated

code—before using them.

Key Consideration & Best Practices

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

Integrating Gemini

• Get your API key at: https://aistudio.google.com

• Click Get API Key ➔ copy it and save it on safe location

• Install Package as: pip install -q google-generativeai

Code

import google.generativeai as genai

API_KEY = "AIzaSyB0Pw8-iT0PhF-CpUs7iv6wGUC_YEY4Y2s"

genai.configure(api_key=API_KEY)

model = genai.GenerativeModel("gemini-1.5-flash")

response = model.generate_content("Write a short poem about AI in 3 lines")
print(response.text)

https://sapkotarabindra.com.np/
https://aistudio.google.com/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

System Instruction

• On OpenAI, we have user prompt, system prompt and assistant

• System Prompt ➔ set context and rule for the assistant

• User Prompt ➔ Actual Input from end – user

• Assistant ➔ Model’s response

Code
system_instruction = "You are a language translator who translates English into Nepali Language. If you

receive input other than English reply content has to be `Not an English Text` else the converted one.

Provide output in JSON as {'Input': user_word, 'Output': converted_word'}"

model = genai.GenerativeModel("gemini-1.5-flash", system_instruction=system_instruction)

response = model.generate_content("How is Social Media ban affecting you?")

print(response.text)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Prompt Engineering and LLM in Python Slides | sapkotarabindra.com.np

Multi-turn Chat

Code

chat = model.start_chat(

 history=[

 {"role": "user", "parts": ["Hello, who are you?"]},

 {"role": "model", "parts": ["I’m an AI assistant trained to help."]},

 {"role": "user", "parts": ["Act as a math teacher."]}

]

)

New user message

response = chat.send_message("Explain Pythagoras theorem in simple words.")

print(response.text)

print chat.history to see conversation

We can give system instruction here as well

https://sapkotarabindra.com.np/

	Slide 1: Prompt Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Summary
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Integrating Gemini
	Slide 15: System Instruction
	Slide 16: Multi-turn Chat

