
sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Fast API
• External Python library

• Installed as: pip install "fastapi[standard]"

• Modern, Fast web framework for building APIs with Python

• Designed to be easy for developers

Analogy

• Think of your ML model as a chef who prepares a dish (prediction).

• FastAPI is the waiter: it takes orders (requests), passes them to the kitchen

(model), and returns the dish (response) to the customer.

• Pydantic is the menu order form — it ensures orders are valid before they

reach the chef.

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Terminologies

1. API ➔ Web applications using the HTTP protocol to transmit structured data

2. Web Application ➔ Application that serves traffic over the web

3. Web Framework ➔ Software framework that helps build web applications

• FastAPI is a web framework that helps to create API

• Other web frameworks: Flask, Django

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Notes

1. Can't run the FastAPI server with the "Run this code" button

2. Define server code in the Python editor as main.py

3. Run it from the terminal as fastapi dev main.py

4. Verify that the logs shows Application startup complete.

5. Stop the live server by pressing Control + C in the same terminal

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Sample

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
 return {"message": "Hello World"}

Now run this file as: fastapi dev main.py

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

GET Operation
• HTTP protocol has several type of operation depending upon

either we need to get, add, modify or delete something

• GET is the most common request

• Example: https://www.google.com:443/search?q=fastapi

Key Parts in above API request

• Host: www.google.com

• Port: 443

• Path: /search

• Query String: ?q=fastapi

https://sapkotarabindra.com.np/
https://www.google.com/search?q=fastapi
http://www.google.com/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Query Param
• Path: /hello

• Query Parameter: “name” (default value: Rabindra)

• Request can be sent from web browser

@app.get("/hello")
def hello(name: str = "Rabindra"):
 return {"message": f"Hello {name}"}

@app.get("/hello_v2")
def hello(name: str = "Rabindra", addr: str = "Kathmandu"):
 return {"message": f"Hello {name} from {addr}"}

student_info = {1: {"Name": "A", "Addr": "KTM"}, 2:{"Name": "B", "Addr": "POK"}}

@app.get("/student_info/{student_id}")
def hello(student_id: int):
 return student_info.get(student_id)

http://127.0.0.1:8000/hello

http://127.0.0.1:8000/hello_v2?name=rasf&addr=Nep

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/hello
http://127.0.0.1:8000/hello_v2?name=rasf&addr=Nep

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

From Code

Code

import requests

base_url = "http://127.0.0.1:8000/hello_v2"

params = {"name": "ABC", "addr": "KTM",}

response = requests.get(base_url, params=params)
response.raise_for_status()
data = response.json()
print("API Response:")
print(data)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Post Operation

• POST is used for creating or adding new record

• Requires application to invoke post operation

• Data that is going to be added is passed as json

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Sample Code
Code

@app.post("/student_info")
def add_student_info(data: dict):
 name = data.get("name")
 address = data.get("address")
 last_id = max(student_info.keys())
 current_data = {last_id + 1: {"Name": name, "Addr": address}}
 student_info.update(current_data)
 return {"message": "Record Created Successfully"}

Uses in app

base_url = "http://127.0.0.1:8000/student_info"
response = request.post(base_url, json={"name":"New User", "address": "BKT"})
print(response.json())

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Put Operation

• PUT is used for updating existing record

• Requires application to invoke post operation

• Data that is going to be updated is passed as json

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Sample Code
Code
@app.put("/student_info")
def add_student_info(data: dict):
 id = data.get("id")
 if id is None:
 return {"message": "ID required to update existing record"}
 name = data.get("name")
 address = data.get("address")
 student_info[id] = {"Name": name, "Addr": address}
 return {"message": "Record Updated Successfully"}

Uses in app
base_url = "http://127.0.0.1:8000/student_info"
response = request.put(base_url, json={"id" : 3, "name":"New User", "address": "BKT"})
print(response.json())

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Delete Operation

• DELETE is used to remove existing record

• Requires application to invoke post operation

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Sample Code

Code
@app.delete("/student_info/{student_id}")
def add_student_info(student_id: int):
 if student_id not in student_info:
 return {"message": "ID not found in existing record"}

 deleted_record = student_info.pop(student_id)
 return {"message": "Record Deleted Successfully", "deleted": deleted_record}

Uses in app
base_url = "http://127.0.0.1:8000/student_info/2"
response = request.delete(base_url)
print(response.json())

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

HTTP Status Codes
• Enables API to provide status in response. Success, failure, error etc.

• Specific code defined in HTTP protocol

• Range: 100 – 599

• Categorized by first number (1 – 5)

Responses

1. Informational Response: 100 – 199

2. Successful Response: 200 – 299

3. Redirection message: 300 – 399

4. Client error responses: 400 – 499

5. Server error response: 500 - 599

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Common Status Codes
Success (200 – 299)

• 200 OK ➔ Default successes response

• 201 Created ➔ Specific to POST operation

• 202 Accepted ➔ Noncommittal. “Working on it”

• 204 No Content ➔ Success! Nothing more to say

Other Responses

• 301 Moved Permanently ➔ URI change permanently

• 400 Bad Request ➔ Client Error

• 404 Not Found ➔ Server cannot find the requested resource

• 500 Internal Server Error ➔ Server has encountered error

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Async for concurrent work

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Asynchronous Processing

• We can write asynchronous function using async def

• Allows Fast API to handle multiple concurrent request

• Synchronous handles one request at a time. If process is slow its

blocked until server completes the processing

Advantages

• Better Performance: For I/O heavy tasks (query, file read, API call)

• Scalability: Handle many simultaneous users

• Responsiveness: App feels better as it doesn’t block long running task

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Analogy

Imagine a chef in a restaurant

• Synchronous (blocking): The chef cooks one dish at a time. If pasta is

boiling, the chef just stands and waits until it’s done before starting the

next dish.

• Asynchronous (non-blocking): While pasta is boiling, the chef starts

chopping vegetables for another dish. The chef switches between tasks

efficiently, so more meals are prepared at once.

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Synchronous
import datetime
import time

def task(name, duration):
 print(f"{datetime.datetime.now()}: Task {name} started")
 time.sleep(duration) # Simulate a time-consuming task
 print(f"Task {name} finished after {duration} seconds")
 return f"Result of {name}"

def main():
 print("Synchronous Processing Demo\n")

 # Task 1
 result1 = task("A", 2)

 # Task 2
 result2 = task("B", 3)

 # Task 3
 result3 = task("C", 1)

 print("\nAll tasks finished")
 print(result1, result2, result3)

if __name__ == "__main__":
 main()

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Asynchronous
import asyncio
import datetime

async def task(name, duration):
 print(f"{datetime.datetime.now()}: Task {name} started")
 await asyncio.sleep(duration) # Simulate a time-consuming task asynchronously
 print(f"Task {name} finished after {duration} seconds")
 return f"Result of {name}"

async def main():
 print("Asynchronous Processing Demo\n")

 # Schedule all tasks concurrently
 tasks = [
 asyncio.create_task(task("A", 2)),
 asyncio.create_task(task("B", 3)),
 asyncio.create_task(task("C", 1)),]

 # Wait for all tasks to complete and collect results
 results = await asyncio.gather(*tasks)

 print("\nAll tasks finished")
 print(*results)

if __name__ == "__main__":
 asyncio.run(main())

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

Asynchronous
File Read

import asyncio
import aiofiles

async def read_file(filename):
 async with aiofiles.open(filename, mode='r') as f:
 content = await f.read()
 print(f"{filename} content length: {len(content)}")
 return content

API Call

import aiohttp

async def fetch_url(url):
 async with aiohttp.ClientSession() as session:
 async with session.get(url) as response:
 data = await response.text()
 print(f"Fetched {len(data)} characters from {url}")
 return data

https://sapkotarabindra.com.np/

	Slide 1: Fast API
	Slide 2: Terminologies
	Slide 3: Notes
	Slide 4: Sample
	Slide 5: GET Operation
	Slide 6: Query Param
	Slide 7: From Code
	Slide 8: Post Operation
	Slide 9: Sample Code
	Slide 10: Put Operation
	Slide 11: Sample Code
	Slide 12: Delete Operation
	Slide 13: Sample Code
	Slide 14: HTTP Status Codes
	Slide 15: Common Status Codes
	Slide 16: Async for concurrent work
	Slide 17: Asynchronous Processing
	Slide 18: Analogy
	Slide 19: Synchronous
	Slide 20: Asynchronous
	Slide 21: Asynchronous

