Fast AP|

External Python library

Installed as: pip install "fastapi[standard]"”

Modern, Fast web framework for building APIs with Python
Designed to be easy for developers

Analogy

« Think of your ML model as a chef who prepares a dish (prediction).

« FastAPlis the waiter: it fakes orders (requests), passes them o the kitchen
(model), and returns the dish (response) to the customer.

« Pydantic is the menu order form — it ensures orders are valid before they

reach the chef.
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Terminologies

1. APl = Web applications using the HTTP protocol to transmit structured data
2. Web Application = Application that serves traffic over the web

3. Web Framework = Software framework that helps build web applications

« FastAPlis a web framework that helps to create API

« Ofther web frameworks: Flask, Django

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

CHEEERR .

Notes

. Can't run the FastAPI server with the "Run this code" button

Define server code in the Python editor as main.py
Run it from the terminal as fastapi dev main.py
Verity that the logs shows Application startup complete.

Stop the live server by pressing Control + C in the same terminal

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Sample

from fastapli import FastAPI

app = FastAPI()

@app.get("/")
def read root():
return {"message”: "Hello World"}

Now run this file as: fastapi dev main.py

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

GET Operation

« HTTP protocol has several type of operation depending upon
either we need to get, add, modify or delete something
 GETIs the most common request

= Excmple: https://www.google.com:443/searcheg=fastapi

Key Parts in above APl request

 Host: www.google.com
« Port: 443

« Path: /search

« Query String: Bq:f%s’ro i

Rabindra Sapkota | Python Fast API Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/
https://www.google.com/search?q=fastapi
http://www.google.com/

Query Param

« Path: /hello
 Query Parameter: “name” (default value: Rabindra)
« Request can be sent from web browser

@app.get("/hello")
def hello(name: str = "Rabindra"):
return {"message": f"Hello {name}"}

@app.get("/hello v2")
def hello(name: str = "Rabindra", addr: str = "Kathmandu"):
return {"message": f"Hello {name} from {addr}"}

student_info = {1: {"Name": "A", "Addr": "KTM"}, 2:{"Name": "B", "Addr": "POK"}}

@app.get("/student_info/{student_id}")
def hello(student_id: int):
return student info.get(student _id)

hitp://127.0.0.1:8000/hello
http://127.0.0.1:8000/hello v2ename=rasf&addr=Nep

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/hello
http://127.0.0.1:8000/hello_v2?name=rasf&addr=Nep

From Code

Code

import requests

"http://127.0.0.1:8000/hello _v2"

base_url
params = {"name": "ABC", "addr": "KTM",}

response = requests.get(base _url, params=params)
response.raise_for status()

data = response.json()

print("API Response:")

print(data)

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Post Operation

« POST s used for creating or adding new record
« Requires application to invoke post operation

- Data that is going to be added is passed as json

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Sample Code

Code

@app.post("/student_info")
def add student _info(data: dict):
name = data.get("name"
address = data.get("address")
last _id = max(student_info.keys())
current_data = {last id + 1: {"Name": name, "Addr": address}}
student_info.update(current_data)
return {"message": "Record Created Successfully"}

Uses in app

base url = "http://127.0.0.1:8000/student info"

response = request.post(base url, json={"name":"New User", "address": "BKT"})
print(response.json())

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

Put Operation

« PUT is used for updating existing record
« Requires application to invoke post operation

- Data that is going to be updated is passed as json

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Sample Code

Code

@app.put("/student_info")
def add _student _info(data: dict):
id = data.get("id")
if id is None:
return {"message": "ID required to update existing record"}
name = data.get("name"
address = data.get("address")
student_info[id] = {"Name": name, "Addr": address}

return {"message": "Record Updated Successfully"}
Uses in app
base url = "http://127.0.0.1:8000/student info"
response = request.put(base url, json={"id" : 3, "name":"New User", "address": "BKT"})

print(response.json())

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

Delete Operation

« DELETE is used o remove existing record

« Requires application to invoke post operation

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Sample Code

Code

@app.delete("/student _info/{student id}")
def add student info(student id: int):
if student_id not in student_info:
return {"message": "ID not found in existing record"}

deleted record = student_info.pop(student id)
return {"message": "Record Deleted Successfully", "deleted": deleted record}

Uses In app

base url = "http://127.0.0.1:8000/student info/2"
response = request.delete(base url)
print(response.json())

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/
http://127.0.0.1:8000/student_info

HTTP Status Codes

« Enables API to provide stafus in response. Success, failure, error etc.
« Specific code defined in HTTP protocol

« Range: 100 - 599

« Categorized by first number (1 — 5)

Responses

1. Informational Response: 100 — 199
Successful Response: 200 — 299
Redirection message: 300 — 399

Client error responses: 400 — 499

O R

Server error response: 500 - 599
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Common Status Codes

Success (200 — 299)

« 200 OK = Default successes response

« 201 Created = Specific to POST operation

« 202 Accepted = Noncommittal. “Working on it”

« 204 No Content = Success! Nothing more to say

Other Responses

« 301 MovedPermanently = URIchange permanently

« 400 Bad Request = Client Error

* 404 Not Found = Server cannot find the requested resource

500 Internal Server Error =» Server has encountered error
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Async for concurrent work

Why use async? Concurrent Burgers!
Sequential Burgers Concurrent Burgers

O FastAPI

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Asynchronous Processing

We can write asynchronous function using async def
« Allows Fast APl to handle multiple concurrent request
« Synchronous handles one request at a time. If process is slow its

blocked until server completes the processing

Advantages
« Better Performance: For I/O heavy tasks (query, file read, API call)
« Scalability: Handle many simultaneous users

« Responsiveness: App feels better as it doesn’t block long running task
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

\gle|lele)Y

Imagine a chef in a restaurant

* Synchronous (blocking): The chef cooks one dish at a time. If pasta is
boiling, the chef just stands and waits unfil it's done before starting the
next dish.

« Asynchronous (non-blocking): While pasta is boiling, the chef starts
chopping vegetables for another dish. The chef switches between tasks
efficiently, so more meals are prepared at once.

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Synchronous

import datetime
import fime

def task(hame, duration):
print(f'{datetime.datetime.now()}: Task {name} started")
time.sleep(duration) # Simulate a time-consuming task
print(f'Task {name} finished after {duration} seconds")
return f'Result of {name}"

def main():
print("Synchronous Processing Demo\n")

Task 1
result] = task("A", 2)

Task 2
result2 = task("B", 3)

Task 3
result3 = task("C", 1)

print("\nAll fasks finished")
print(resultl, result2, result3)

if _name__=="_main__"
main()
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

ASYNCNhronous

import asyncio
import datetime

async def task(name, duration):
print(f'{datetime.datetime.now()}: Task {name} started")
await asyncio.sleep(duration) # Simulate a time-consuming task asynchronously
print(f'Task {name} finished after {duration} seconds")
return f'Result of {name}"

async def main():
print("Asynchronous Processing Demo\n")

Schedule all tasks concurrently

tasks = [
asyncio.create_task(task("A", 2)),
asyncio.create_task(task("B", 3)),
asyncio.create_task(task("C", 1)),]

Wait for all tasks to complete and collect results
results = await asyncio.gather(*tasks)

print("\nAll tasks finished")
print(*results)

if _name__=="_main__"
asyncio.run(main()) . . .
© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

ASYNCNhronous

File Read

import asyncio
import aiofiles

async def read file(filename):
async with aiofiles.open(filename, mode='r') as f:
content = await f.read()
print(f"{filename} content length: {len(content)}")
return content

API Call

import aiohttp

async def fetch_url(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
data = await response.text()
print(f"Fetched {len(data)} characters from {url}")
return data

© Rabindra Sapkota | Python Fast APl Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

	Slide 1: Fast API
	Slide 2: Terminologies
	Slide 3: Notes
	Slide 4: Sample
	Slide 5: GET Operation
	Slide 6: Query Param
	Slide 7: From Code
	Slide 8: Post Operation
	Slide 9: Sample Code
	Slide 10: Put Operation
	Slide 11: Sample Code
	Slide 12: Delete Operation
	Slide 13: Sample Code
	Slide 14: HTTP Status Codes
	Slide 15: Common Status Codes
	Slide 16: Async for concurrent work
	Slide 17: Asynchronous Processing
	Slide 18: Analogy
	Slide 19: Synchronous
	Slide 20: Asynchronous
	Slide 21: Asynchronous

