
sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Regex (Regular Expression)

• Used to search & replace pattern, validate string follows a pattern

• Most underestimated tool. Found even in text editors

• Match done using:

• Literal

• Character class

• Alteration

• Metacharacters

• Quantifier

• Iteration

• Groups

• Look Arounds

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Literals

• It's like normal text search

• Some literal holds special meaning. Example: ., *, +

• To match these special literal, we have to escape with \

• Example:

• cat, dog, ram

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Character Class
• Any character mentioned within big bracket is matched

• [AEIOUaeiou] gives match in letter if any character matches

• [A-Za-z] gives match for any alphabet

• ^ is used at initial to negate match.

• [^A-Za-z] matches everything except alphabet

• If we require to match ^, it has to be in middle/end [A-Z^]

• Example:

• [crbh]at # Matches cat, rat, hat & bat. If I want a/o in 2nd?

• [0-9] # Matches any digit, repeat 10 times for 10 digit

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Alteration

• Used when we want to match multiple regex with or condition

• (r1|r2|r3) gives matches if either of r1, r2 or r3 matches

• Example:

• (Mr |Mrs |Ms)[a-zA-z] # Matches designation & alphabet

• (\+|)[0-9] # Matches digit with + at beginning

• (Mr |Mrs |Ms)[a-zA-z]+ # Match designation & 1st name

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Iteration
• Used if previous literal, class or group has to be matched n times

• Iteration is specified inside curly bracket {}.

• Single number denotes it has to repeat given number of times

• Number separated by , denotes min & max occurrence

• Example:

• (cat){2} # Cat has to repeat 2 times for match

• (cat){2, 4} # Cat can repeat 2 – 4 times for match

• (cat){,4} # Cat can repeat 1-4 times for match

• (cat){2,} # Cat can repeat 2-n times for match

• [A-Z] [0-9]{9} # Alphabet has to be repeated by 9 digits for match

• 9[0-9]{9} # 9 has to be followed by 9 digits for match

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Special Character

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Quantifier

• Used to match multiple character in a string

• Greedy by default. Can use ? to make them non-greedy

• Some Quantifiers:

• + ➔ One or more repetition of preceding regex

• * ➔ Zero or more repetition of preceding regex

• ? ➔ Zero or one repetition of preceding regex (question symbol)

• Example:
• Mr[\.\s][A-Z][a-z]+ # Matches name with Mr. or Mr in its initial

• M(r|s|rs)\.?\s[A-Z]\w* # Matches Mr, MS or Mrs

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Group

• We can capture whole pattern in multiple parts with group

• We have two type of group: Capture & Non – Capture

• Capture group is in form (regex) & non-capture in (?:regex)

• Captured group are saved into memory & can reference later

• Example:

• \d{4}([-\.\\/])?\d{2}\1\d{2} # Matches date

• https?://(www\.)?(\w+)(\.\w+) # 2nd group match domain name

• \b(\w+)\s+\1\b # Capture repeated word

• (?:M(r|s|rs)\.?\s)([A-Z]\w*) # Non-Capturing Group

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Look Ahead

• Look ahead is exclude in match but ensures it has to be there

• Looks forward in match

• Type: Positive & Negative

• Example:

• regex_1(?=regex_2) ➔ regex_2 just after regex_1

• regex_1(?!regex_2) ➔ regex_2 not after regex_1

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Look Behind

• Look behind is exclude in match but ensures it has to be there

• Looks backward in match

• Type: Positive & Negative

• Example:

• (?<=regex_1)regex_2 ➔ regex_1 just before regex_2

• (?<!regex_1)regex_2 ➔ regex_1 not before regex_2

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Examples

• (?<=Mr\.)\w+ ➔ Capture Name w/o title

• \w+(?=:\s) ➔ Capture key of key-value Pair

• (?<!hot)dog ➔ Capture dog if there is not hot prior

• \d+(?=kg) ➔ Captures the number if kg is afterwards

• (?<=@)\w+(?=\.(com|edu)) ➔ Capture the email provider

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Anchor

• ^ & $ are anchors to bind the search

• ^ ➔ Match at beginning

• $ ➔ Match at end

Example:

• ^\d{10}$

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Exercise

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Python Implementation

• Python has built-in regex library

• Has functions:

• search

• findall

• match

• compile

• split

• sub

• finditer

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

search

• Takes regex format and searches for it in a string

• Returns first substring that matches regex

• Invoke .group for getting matched string

• Returns None if not found

Example:

• import re

usr_txt = “I bought 12kg apple”

reg_to_match = r’\d+kg’

matched_result = re.search(reg_to_match, usr_txt)

print(matched_result.group())

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Named Group

• For group, instead of using 1, 2 we can give name

• We can give name as ?P<group_name>

 import re

usr_txt = "Date of today is 2025-07-10. I have 3 class today"

reg_to_match = r"(?P<Y>\d{4})-(?P<M>\d{2})-(?P<D>\d{2})"

matched_result = re.search(reg_to_match, usr_txt)

print(matched_result.group())

print(matched_result.group("Y"))

print(matched_result.group("M"))

print(matched_result.group("D"))

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

findall

• Search for pattern from start to end of string

• Returns all string that matches as a list

 import re

usr_txt = "Date of today is 2025-07-10. I have 3 class today"

reg_to_match = r"\d{4}-\d{2}-\d{2}"

matched_result = re.findall(reg_to_match, usr_txt)

print(matched_result)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

match

• Similar to search but match happens at the beginning

 import re

usr_txt = "Date of today is 2025-07-10. I have 3 class today"

reg_to_match = r"\d{4}-\d{2}-\d{2}"

matched_result = re.match(reg_to_match, usr_txt)

print(matched_result.group())

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

compile

• We can compile regex pattern as object

• Compiled object can be used for future matches

Example:

• import re

usr_txt = "I bought 12kg apple"

reg_to_match = re.compile(r'\d+kg')

matched_result = reg_to_match.search(usr_txt)

print(matched_result.group())

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

split

• Splits string into list using regex as delimiter

• Compiled object can be used for future matches

Example:

• import re

usr_txt = "I bought 12kg apple and 15kg orange"

reg_to_match = re.compile(r'and')

split_data = reg_to_match.split(usr_txt) # re.split(regex, word)

print(split_data)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

sub

• Substitute matched expression with given string

Example:

• import re

usr_txt = "I bought 12kg apple and 15kg orange"

reg_to_match = re.compile(r'and')

replaced = re.sub(reg_to_match, '&', usr_txt)

print(replaced)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

finditer

• Find index and value in the match

Example

import re

text = 'Python exercises, PHP exercises, C# exercises'

pattern = '(\S)+?(?= exercises)'

for match in re.finditer(pattern, text):

start_index = match.start()

end_index = match.end()

print("Found {} at index: {}-{}".format(match.group(), start_index, end_index))

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

Exercise

https://sapkotarabindra.com.np/

	Slide 1: Regex (Regular Expression)
	Slide 2: Literals
	Slide 3: Character Class
	Slide 4: Alteration
	Slide 5: Iteration
	Slide 6: Special Character
	Slide 7: Quantifier
	Slide 8: Group
	Slide 9: Look Ahead
	Slide 10: Look Behind
	Slide 11: Examples
	Slide 12: Anchor
	Slide 13: Exercise
	Slide 14: Python Implementation
	Slide 15: search
	Slide 16: Named Group
	Slide 17: findall
	Slide 18: match
	Slide 19: compile
	Slide 20: split
	Slide 21: sub
	Slide 22: finditer
	Slide 23: Exercise

