Regex (Regular Expression)

« Used to search & replace pattern, validate string follows a pattern
* Most underestimated tool. Found even in text editors

 Match done using:

e Literal
 Character class
« Alferation

« Metacharacters
« Quantifier

e |feration

« Groups

 Look Arounds

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Literals

It's like normal text search

Some literal holds special meaning. Example: ., *, +

To match these special literal, we have to escape with \
Example:

e cat, dog, ram

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Character Class

Any character mentioned within big bracket is matched

AEIOUaeiou] gives match in letter it any character matches

A-Za-z] gives match for any alphabet

N is used at initial to negate match.

[NA-Za-z] matches everything except alphabet

If we require to match A, it has to be in middle/end [A-ZA]
Example:

« [crbh]at # Matches caf, rat, hat & bat. If | want a/o in 219

« [0-9] # Matches any digit, repeat 10 times for 10 digit

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Alteration

« Used when we want to match multiple regex with or condition

« (r1|r2|r3) gives matches if either of rl, r2 or r3 matches

« Example:
« (Mr |Mrs | Ms)[a-zA-z] # Maiches designation & alphabet
* (\HAElCS # Matches digit with + at beginning

« (Mr |Mrs | Ms)[a-zA-z]+ # Match designation & 15" name

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Itferation

Used if previous literal, class or group has to be matched n fimes
lteration is specified inside curly bracket {}.
Single number denotes it has to repeat given number of fimes

Number separated by , denotes min & max occurrence

Example:
(cat){2} # Cat has to repeat 2 times for match
(cat){2, 4} # Cat canrepeat 2 - 4 times for match
(cat){,4} # Cat can repeat 1-4 times for match
(cat){2} # Cat can repeat 2-n times for match

[A-Z] [0-9]{9} # Alphabet has to be repeated by 9 digits for match
?[0-9){%9} # 9 has 1o be followed by 9 digits for match

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Special Character

Tab

New Line

Any digit between 0 to 9

Any non digit character

White space. Space, Tab, New line

Non white space

Any alphanumeric character. 0-9,a-z,A-Z,

Non alphanumeric character

Space around words

Non word boundary. i.e no space around word

Matches regex expressions preceding or following it. Regex or
Escape character

Matches any character except newline

Match happens at beginning of string

Matches range of values inside the given bracket. Eg: [a-zA-Z\d]
Provide regex inside it and match for it

Matches character that doesn’'t matches regex inside bracket
R and S are multiple regexes. Matches R or S

Match happens at the end of string

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Quantifier

Used to match multiple character in a string
Greedy by default. Can use ¢ 1o make them non-greedy

Some Quantifiers:

« + = One or more repetition of preceding regex
« * =» Jero or more repetition of preceding regex
« ¢ =» /ero or one repetition of preceding regex (question symbol)

Example:
e Mr[\.\s][A-Z][a-z]+ # Matches name with Mr. or Mr in its inifial
« M(r|s]|rs)\.2\s[A-Z]\wW* # Matches Mr, MS or Mrs

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Group

We can capture whole pattern in multiple parts with group
We have two type of group: Capture & Non — Capture
Capture group is in form (regex) & non-capture in (¢:regex)

Captured group are saved info memory & can reference later

Example:

o \d{4}[-\\\/])2\d{2]\1\d{2} # Matches date

« httpse:.//(www\.)e(\w+)(\.\w+) # 2nd group match domain name
« \b(\w+)\s+\1\b # Capture repeated word

o (2:M(r|s|rs)\.2\s)([A-Z]\W¥) # Non-Capturing Group

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Look Ahead

Look ahead is exclude in match but ensures it has to be there
Looks forward in match

Type: Positive & Negaftive

Example:

o regex_Il(e=regex_2) =>regex_2 just afferregex_]

« regex_Il(elregex_2) = regex_2 not afterregex_1

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Look Behind

Look behind is exclude in match but ensures it has o be there
Looks backward in match

Type: Positive & Negaftive

Example:

e (e<=regex_l)regex_ 2 = regex_I just before regex_ 2

e (e<lregex_l)regex_2 = regex_| not before regex_2

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Examples

(¢<=Mr\.)\w+ = Capture Name w/o fitle

\W+(2=:\5) = Capture key of key-value Pair
(¢<!hot)dog = Capture dog if there is not hot prior
\d+(e=kQ) = Capftures the number if kg is afferwards

(¢<=@)\w+(e=\.[com | edu)) = Capture the email provider

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

ANChor

« N & $ are anchors o bind the search
« N = Mafch at beginning
« $ = Match af end

Example:
« A\d{10}$

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Exercilse

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Python Implementation

* Python has built-in regex library

« Has functions:

search
findall
match
compile
split

sUb
finditer

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

seqarch

« Takes regex format and searches for it in a string
« Returns first substring that matches regex

* |nvoke .group for getting matched string

« Returns None if not found

Example:

* Importre
usr_txt = "l bought 12kg apple”
reg_to_match =r'\d+kg’
matched_result = re.search(reg_to_martch, usr_txt)
print(matched_result.group())
© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Named Group

For group, instead of using 1, 2 we can give name

We can give hame as ¢P<group_name>

import re

usr_txt = "Date of today is 2025-07-10. | have 3 class today"
reg_to_match = r'(2P<Y>\d{4})-(¢eP<M>\d{2})-(¢P<D>\d{2})"
matched_result = re.search(reg_to_match, usr_ixt)
print(matched_result.group())
print(matched_result.group("Y"))
print(matched_result.group("M"))
print(matched_result.group("'D"))

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

findall

Search for pattern from start to end of string

Returns all string that matches as a list

import re

usr_txt = "Date of today is 2025-07-10. I have 3 class today"
reg to_match = r"\d{4}-\d{2}-\d{2}"

matched result = re.findall(reg to match, usr_ txt)

print(matched result)

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

match

Similar to search but match happens at the beginning

import re

usr_txt = "Date of today is 2025-07-10. I have 3 class today”
reg to match = r"\d{4}-\d{2}-\d{2}"

matched _result = re.match(reg _to match, usr_txt)

print(matched result.group())

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

compile

« We can compile regex pattern as object

« Compiled object can be used for future matches

Example:

* Importre
usr_txt ="l bought 12kg apple”
reg_to_match =re.compile(r'\d+kg’)
matched_result = reg_to_match.search(usr_txt)

print(matched_result.group())
© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

yelll

« Splits string into list using regex as delimiter

« Compiled object can be used for future matches

Example:

* Importre
usr_txt ="l bought 12kg apple and 15kg orange”
reg_to_match =re.compile(rand’)
split_data = reg_to_match.split(usr_txt) # re.split(regex, word)

print(split_data)

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

SUD

« Substitute matched expression with given string

Example:

* Importre
usr_txt ="l bought 12kg apple and 15kg orange”
reg_to_match =re.compile(rand’)
replaced =re.sub(reg_to_match, '&’, usr_txt)

print(replaced)

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

finditer

« Find index and value in the match

Example

import re
text = 'Python exercises, PHP exercises, C# exercises'
pattern = '(\S)+2¢ (2= exercises)
for match in re.finditer(pattern, text):
start_index = match.start()
end_index = match.end()
print("Found {} at index: {}-{}".format(match.group(), start_index, end_index))

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Exercilse

© Rabindra Sapkota | Regex Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

	Slide 1: Regex (Regular Expression)
	Slide 2: Literals
	Slide 3: Character Class
	Slide 4: Alteration
	Slide 5: Iteration
	Slide 6: Special Character
	Slide 7: Quantifier
	Slide 8: Group
	Slide 9: Look Ahead
	Slide 10: Look Behind
	Slide 11: Examples
	Slide 12: Anchor
	Slide 13: Exercise
	Slide 14: Python Implementation
	Slide 15: search
	Slide 16: Named Group
	Slide 17: findall
	Slide 18: match
	Slide 19: compile
	Slide 20: split
	Slide 21: sub
	Slide 22: finditer
	Slide 23: Exercise

