Feature Scaling

ML model may behave incorrectly if one feature has higher value than other
Numerical features should be franstormed such that they have similar range
Below, without scaling Salary dominates learning as distance gets biased.
Scaling improves accuracy, speed up training and prevent dominant of
large value feature

Types: MinMaxScaler, StandardScaler
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MinMax Scaling

Transforms data intfo range [0, 1]
Preserves original distribution shape
Sensitive 1o outliers

X —Xmin
X —-Xm.

max n

Formulae: X =
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Standard Scaling

Also called Z — Score Scaling

After tfransformation new data is centered around u=08& o = 1

Widely used in ML

Mean will be 0, Value above mean will be +ve & below mean will be -ve

X — U
o

Formulae: X =
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Robust Scaling

Uses median and IQR for data transformation
Less affected by outlier
Best when data has exireme value

X —Median
IQR

Formulae: X =

Junior
Intern

Senior

© Rabindra Sapkota | ML Data Preprocessing Slides | sapkotarabindra.com.np



https://sapkotarabindra.com.np/

Max Absolute Scaling

Transforms data intfo range [-1, 1]
Preserves zero values

Useful for sparse data (most value as 0)

X
| X

Formulae: X =

maxl
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Summary

Min-Max Oto 1 >{ No Image data

Standard Mean 0, Std 1 2 No Most ML models
Robust No fixed . Yes Outlier-heavy data
MaxAlbs -1to 1 2 No Sparse data

Linear Regression Decision Tree
Logistic Regression Random Forest
SVM XGBoost

KNN

K — Means Clustering

Neural Network
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Python Demo Code
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Encoding

Scikit learn doesn’'t accept categorical feature

Categorical features has to be encoded numerically

Convert data to dummy variables.

Some common encoding tfechniques are:

Label Encoding

One-Hot Encoding

Binary Encoding

Target Mean Encoding

Frequency / Count Encoding

Embedding
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Ordinal Encoding

Technigue to convert categorical variables (ordinal) info numeric form
Useful for ordinal data where order matters
Not good for nominal data as model may assume numeric relationships

Example: [“large”, “small”, “medium”] = [2, O, 1]
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Label Encoding

Technigue to convert categorical variables info numeric form
Assigns label alphabetically. Example: apple 2 0, ball > 1 as apple < ball
Can mislead in nominal data as model may assume numeric relationships

Example: ["red”, “blue”, “yellow”] = [0, 1, 2]
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One - Hot Encoding

Creates a binary column for each category

Example: ["red”, “blue”, “green”] 2
red blue green

1 0 O
O O
O O

Works well for nominal data

Downside: Creates many columns if category are numerous
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Binary Encoding

Binary Encoding

First convert categories into integers, then into binary
After its separated into multiple columns (of binary digit)
Example: “red” > 1 2 01; “blue” > 2 > 10; “Green” > 3 > 11

More compact that One Hot Encoding

For n values log,(n) new columns are sufficient to hold encoded data

Works well for high cardinality feature
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Other Encoding

Target Mean Encoding

« Replace categories with the mean of target variable for each
« Some smoothing is applied so we get non-intuitive number
Instead of mean

Frequency Encoding

« Replace categories with their frequency or count
« Works well with high cardinality feature
« City: "London" (1000 fimes), "Paris" (500 times) — 1000, 500

Embedding (For Deep Learning)

« Represent category in dense vector space
« Used in NLP and recommendation system
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Python Code
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