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KNN
• Tell me your friend’s group, I will tell where you belong.

• Store all training data

• For new Data Point:

• Compute distance with all data point (Euclidean, Manhattan, Mankowski)

• Pick k nearest Neighbor

• Assign it to most common class

• Advantages:

• Simple and Intuitive

• No Assumption on Data Distribution

• Disadvantages:

• Slow for large dataset. (distance computed for every point)

• Sensitive to unscaled feature

• Struggles in high dimension
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KNN
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Hyperparameter
• Parameter ➔ Learned from data (i.e. weights in linear  regression)

• Hyperparameter ➔ Set before training. Controls how model learn

1. k (number of neighbors)

• Small k  → Sensitive to Noise (Overfitting)

• Large → Smooth decision boundary (underfitting)

2. Distance metric

• Euclidean  → Default

• Manhattan

• Mankowski

• Cosine

3. Weights

• uniform ➔  Each Neighbor has equal weight
• Distance ➔ Closer Neighbor More important
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knn classifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import seaborn as sns

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

# Display matrix

sns.heatmap(cm, annot=True, fmt="d", xticklabels=iris.target_names, yticklabels=iris.target_names, 

cmap="Blues")

plt.xlabel("Predicted"); plt.ylabel("Actual"); plt.title("Confusion Matrix (Iris Dataset)"); plt.show()

print(classification_report(y_test, y_pred, target_names=iris.target_names))
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Error
MSE (RMSE)
• Mean Squared Error

• Average Squared difference between predicted vs actual value

• (sum{(yp – ya) ** 2}) / n

• Sensitive to large error

R – Squared

• Coefficient of determination

• 1 – sum((y-yp_bar) ** 2) / sum((y – ybar) ** 2)
• 1 ➔ Perfect prediction, 0 ➔ No better than mean, -1 ➔ Worse than mean

MAE

• Mean absolute error

• Average of absolute error between predicted vs actual value

• If median is used instead of mean then its Median Absolute error
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Confusion Matrix
• Table that summarizes how well a classification model performs 

by comparing Actual vs Predicted label

• For binary classification

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Significance:
TP  ➔  Model correctly predicted positive value

TN  ➔  Model correctly predicted negative value

FP  ➔  Model predicted positive but it was wrong (Type – I)

FN  ➔  Model predicted negative but it was wrong (Type – II)

https://sapkotarabindra.com.np/


sapkotarabindra.com.np

© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkotarabindra.com.np

Other Metrics
• Accuracy

• Overall Correctness

• (TP + TN) / (TP + TN + FP + FN)

• Precision
• Out of predicted positive how many were correct ?

• TP / (TP + FP)

• Recall (Sensitivity)
• Out of actual positive how many did we catch ?

• TP / (TP + FN)

• Specificity
• TN / (TN + FP)

• F1 Score
• 2 * precision * recall / (precision + recall)
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Why it matters

• Shows where the model is making error beyond the accuracy

• Accuracy itself is useless for imbalance class.

• Example: Disease test where 5% of patient are infected. Predicting everyone 

healthy gives 95% accuracy but misses all patients

• Helps in problem specific optimization:

• Medical Diagnostic: Reduce FN is critical (Don’t miss sick patient) [Recall]

• Spam Detection: Reducing FP is critical (Don’t block genuine mail) [Precision]

• Credit Fraud: FN & FP critical (No loss vs customer card not block)  [F1 Score]

• Rain Prediction: FN (Farmer may lose crop) or FP (Trip Cancellation)

• Security System for terrorist fact detection: FN critical
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SVM
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SVM
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SVM
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SVM
• Find best boundary between the classes

• Find Hyperplane that separates class with maximum margin

• Terms:

• Hyperplane: Decision boundary separating the class

• Margin: Distance between hyperplane & nearest point (Support Vector)

• Support Vector: Data point closes to Hyperplane

• Advantage:

• Works well with high-dimensional space

• Works well with clear margin of separation

• Disadvantage:

• Sensitive to noisy data / overlapping class

• Computationally expensive for large dataset
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Algorithm

• Identify the Support Vectors. Data points closest to data point of another 

class

• Identify the equation of hyperplane such that this plane will have 

maximum distance with Support Vectors identifies

• If there are multiple support vectors finding equation of hyperplane is like 

regression of their midpoint

• On training evaluate a point with hyperplane equation and assign label 

according to ax1 + by1 + c > 0 or less

https://sapkotarabindra.com.np/


sapkotarabindra.com.np

© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkotarabindra.com.np

Non – Linear Boundary
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Kernel Trick

• Sometimes classes are not linearly separable in original space.

Kernel Trick:
• Map input data into higher-dimensional space

• Allows linear separation in that space without explicitly computing coordinates

Common Kernels:

• Linear: No mapping, original feature space

• Polynomial: Non-linear boundaries (degree d)

• RBF (Gaussian): Infinite-dimensional space, flexible boundary

• Sigmoid: Similar to neural network activation

Benefits:
• Allows SVM to handle non-linear classification problems

• Keeps computation efficient via kernel functions
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Hyper Parameter

• Parameter: Learned from data (e.g., support vectors)

• Hyperparameter: Set before training, controls model behavior

C (Regularization):

• Small C → Wide margin, more misclassifications allowed (underfitting)

• Large C → Narrow margin, fewer misclassifications (overfitting)

Kernel type: linear, poly, rbf, sigmoid

Gamma (for RBF / poly):

• Small gamma → smooth decision boundary

• Large gamma → more complex boundary

Degree (for polynomial kernel)
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Classification Code
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, classification_report

import seaborn as sns

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

svm_model = SVC(kernel='rbf', C=1, gamma='scale')

svm_model.fit(X_train, y_train)

y_pred = svm_model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

sns.heatmap(cm, annot=True, fmt="d", xticklabels=iris.target_names, yticklabels=iris.target_names, 

cmap="Blues")

plt.xlabel("Predicted"); plt.ylabel("Actual"); plt.title("Confusion Matrix (Iris Dataset)"); plt.show()

print(classification_report(y_test, y_pred, target_names=iris.target_names))
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Linear Regression
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Goal – Minimize Error
1. Find the residual or error. (Error e = Ypred – Yactual)

2. Sum of error = sum(ei)

3. If the equation of line is Yp = b1X + bo
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Goal – Minimize Error
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Goal – Minimize Error
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Python Code
from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

import pandas as pd

housing = fetch_california_housing()

X = pd.DataFrame(housing.data, columns=housing.feature_names)

y = housing.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

model = LinearRegression()

model.fit(X_train_scaled, y_train)

y_pred = model.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print("Mean Squared Error:", mse)

print("R² Score:", r2)

coefficients = pd.DataFrame({"Feature": housing.feature_names, "Coefficient": model.coef_})

print(coefficients)

https://sapkotarabindra.com.np/


sapkotarabindra.com.np

© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkotarabindra.com.np

Cross - Validation

• Model performance is dependent in a way data is split

• Solution: cross-validation. 

• Split data into n group. Hold one and train on other. Repeat process

• Using more folds can be computationally expensive

• Stores result of R2 value in an array. 

• scoring: precision, recall, f1, accuracy, roc_auc, neg_mean_squared_error, ..

Example:

from sklearn.model_selection import cross_val_score
cv_result = cross_val_score(model, X, y, cv=5) # 5-fold cv
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Logistic Regression

• Used for classification problem

• It outputs a probability using activation functions

• If p > .5 then predicted as 1 else predicted as 0

• If we set threshold, p=0 then all will be predicted True

• ROC (Receiver Operating Characteristics) curve shows how well classifier 

works for different threshold

• For each threshold, calculate FPR , TPR and plot FPR vs TPR in graph

X-axis ➔ FPR how often the model says “yes” when it should have said “no.”

Y-axis ➔ how often the model correctly says “yes” when it really is “yes.”
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Activation Function

• Logistic Regression always uses sigmoid activation function

• For multi-class, it uses SoftMax activation function
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Logistic Regression
from sklearn.metrics import roc_curve
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
import matplotlib.pyplot as plt

breast_cancer = datasets.load_breast_cancer()
X = breast_cancer.data
y = breast_cancer.target
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, 
random_state=42)
logreg = LogisticRegression(max_iter=10000)
logreg.fit(X_train, y_train)

# Compute predicted probabilities
y_pred_prob = logreg.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)

# To plot dotted diagonal line
plt.plot([0, 1], [0, 1], "k--“, label=“Random Guess“)
plt.plot(fpr, tpr, label="Logistic Regression")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Logistic Regression ROC curve")
plt.show()
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Area Under Curve
from sklearn.metrics import roc_auc_score

from sklearn.model_selection import train_test_split, cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

breast_cancer = datasets.load_breast_cancer()

X = breast_cancer.data

y = breast_cancer.target

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y)

# Did Not converge on default iteration rate

logreg = LogisticRegression(max_iter=10000)

logreg.fit(X, y)

# Compute predicted probabilities

y_pred_prob = logreg.predict_proba(X_test)[:, 1]

print("AUC: {}".format(roc_auc_score(y_test, y_pred_prob)))

cv_auc = cross_val_score(logreg, X, y, cv=5, scoring="roc_auc")

print("Cross validation score {}".format(cv_auc))
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Tuning Hyperparameter

• Parameters like:

• α in lasso and ridge

• k in knn

• max_iter in logistic regression

• Hyperparameter can’t be learned by fitting a model

• Choosing a hyperparameter

• Try a bunch of different hyperparameter value

• fit them separately

• See how well each parameter performs

• Choose best performing one
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Grid Search Cross Validation

• For hyperparameter, validation is done for all combination

• Computationally expensive but guaranteed to give best model

• Based on performance choose hyperparameter that gives best result

• Parameter values to try has to be passed as dictionary
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Randomized Search CV

• Doesn’t try to fit for each combination of hyperparameter

• It can jump values on grid

• Used to same computation time

• Same code can be used for Python

• Instead of GridSearchCV use RandomizedSearchCV
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Ensemble Learning

• Combine multiple model to improve robustness and accuracy

Bagging

• Trains the same algorithm on random set of data and average

• Example: BaggingClassifier, RandomForestClassifier

Stacking:

• Combine multiple models independently into a meta model

• Example: StackingClassifer

Boosting:

• Train model sequentially, new model focus on correcting mistake of previous one
• For weak learner

• Example: AdaBoostClassifier, GradientBoostingClassifier, XGBoost
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Bagging Classifier
from sklearn.ensemble import BaggingClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# Load data

X, y = load_iris(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Base model

knn = KNeighborsClassifier(n_neighbors=11)

# Bagging ensemble

bagging_knn = BaggingClassifier(estimator=knn, n_estimators=50, random_state=42)

bagging_knn.fit(X_train, y_train)

# Evaluate

y_pred = bagging_knn.predict(X_test)

print("Bagging KNN Accuracy:", accuracy_score(y_test, y_pred))
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Stacking Classifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# Load data
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Define base learners
base_learners = [
  ("knn", KNeighborsClassifier(n_neighbors=11)),
  ("svm", SVC(probability=True)),
  ("tree", DecisionTreeClassifier()),
]

# Meta-model
meta_model = LogisticRegression()

# Stacking
stack = StackingClassifier(estimators=base_learners, final_estimator=meta_model, cv=5)
stack.fit(X_train, y_train)

print("Stacking Accuracy:", stack.score(X_test, y_test))
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Boosting
from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data

X, y = load_iris(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Weak learner

tree = DecisionTreeClassifier(max_depth=1)  # decision stump

# Boosting

boost = AdaBoostClassifier(

    estimator=tree,

    n_estimators=50,

    learning_rate=1.0,

    random_state=42

)

boost.fit(X_train, y_train)

y_pred = boost.predict(X_test)
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Encoding

• Scikit learn doesn’t accept categorical feature

• Categorical features has to be encoded numerically

• Convert data to dummy variables. 

• Some common encoding techniques are:

• Label Encoding

• One-Hot Encoding

• Binary Encoding

• Target Mean Encoding

• Frequency / Count Encoding

• Embedding
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Label Encoding

• Each category is assigned an integer value.

• Example: [“red”, “blue”, “green”] → [2, 0, 1]

• Useful for ordinal data where order matters

• Can mislead for nominal data as model may assume numeric relationships
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One - Hot Encoding

• Creates a binary column for each category

• Example: [“red”, “blue”, “green”] → 

red  blue  green

 1     0     0

 0     1     0

 0     0     1

• Works well for nominal data

• Downside: Creates many columns if category are numerous
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Binary Encoding

Binary Encoding

• First convert categories into integers, then into binary

• After its separated into multiple columns (of binary digit)

• Example: “red” → 1 → 01; “blue” → 2 → 10; “Green” → 3 → 11

• More compact that One Hot Encoding

• Works well for high cardinality feature
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Other Encoding
Target Mean Encoding

• Replace categories with the mean of target variable for each

• Example: if target is purchasing probability
• Gender: female → 0.6;  male → 0.4;

Frequency Encoding

• Replace categories with their frequency or count

• Works well with high cardinality feature

• City:  "London" (1000 times), "Paris" (500 times) → 1000, 500

Embedding (For Deep Learning)

• Represent category in dense vector space

• Used in NLP and recommendation system
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Python Code
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Pipeline

• We have multiple steps on training of ML algorithm

• Instead of doing fit and transform in each we combine these steps 

as a pipeline and use it for train or predict
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Save Model

• After model has been completed we need to store model

• Saving and importing model ensure that we don’t run into same 

long running and time-consuming training process again

• We make use of joblib library for it

Example

import joblib

joblib.dump(model, “model_name.pkl”)

loaded_model = joblib.load(" model_name.pkl")
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