NN

Tell me your friend’s group, | will tell where you belong.
Store all training data

For new Data Point:

« Compute distance with all data point (Euclidean, Manhattan, Mankowski)
« Pick k nearest Neighbor
« Assign it to most common class

Advantages:

« Simple and Infuitive
« No Assumption on Data Distribution

Disadvantages:
« Slow for large dataset. (distance computed for every point)
« Sensitive to unscaled feature

« Struggles in high dimension
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KNN Step-By-Step
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Hyperparameter

« Parameter = Learned from data (i.e. weights in linear regression)

 Hyperparameter = Set before training. Controls how model learn

1. k (humber of neighbors)

« Smallk - Sensitive to Noise (Overfitting)
- Large > Smooth decision boundary (underfitting)

2. Distance metric

« Euclidean - Default
« Manhattan

« Mankowski

« Cosine

3. Weights

« uniform = Each Neighbor has equal weight
« Distance = Closer Neighbor More important
© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkofarabindra.com.np
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knn classifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_maitrix, classification_report
import matplotlib.pyplot as plt

import seaborn as sns

iris = load_liris()
X,y =irs.datq, iris.target
X_train, X_test, y_train, y_test = frain_test_split(X, y, test_size=0.2, random_state=42)

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

cm = confusion_matrix(y_test, y_pred)
# Display matrix
sns.heatmap(cm, annot=True, fmt="d", xticklabels=iris.target_names, yticklabels=iris.target_names,

cmap="Blues")
plt. xlabel("Predicted"); plt.ylabel("Actual”); plt.title("Confusion Matrix (Iris Dataset)"); plt.show()
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Error

MSE (RMSE)

« Mean Squared Error

« Average Squared difference between predicted vs actual value
* (sum{(yp-vya) ** 2}) /' n

« Sensitive to large error

R - Squared

« Coefficient of determination

o 1 —-sum((y-yp_bar) **2) / sum((y — ybar) ** 2)

« | =» Perfect prediction, O = No better than mean, -1 = Worse than mean

MAE
 Mean absolute error
« Average of absolute error between predicted vs actual value

e |f median is used instfead of mean then its Median Absolute error
© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkofarabindra.com.np



https://sapkotarabindra.com.np/

Confusion Matrix

« Table that summarizes how well a classification model performs
by comparing Actual vs Predicted label

* For binary classification

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

Significance:

n T -4 -
—Z U0 ~Z

D

L

Moc
MocC
MocC
Mode

® D D

False Positive (FP)

correcCl

correc
predic

True Negative (TN)

ly predicted positive value

tly predicted negative value

‘ed positive but it was wrong (Type - |

predic

'ed negafive but it was wrong (Type — i)
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Other Metrics

Accuracy

« QOverall Correctness
« (TP+TN) /(TP + TN + FP + FN)

Precision

« Out of predicted positive how many were correct ¢
» TP /(PSS

Recall (Sensitivity)

« Out of actual positive how many did we catch ¢
« TP/ (TP + FN)

Specificity
+ TN/ (TN +FP)

F1 Score
« 2 *precision *recall / (precision + recall)
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Why It matters

Shows where the model is making error beyond the accuracy
Accuracy itself is useless for imbalance class.
Example: Disease test where 5% of patient are infected. Predicting everyone
healthy gives 95% accuracy but misses all patients
Helps in problem specific optimization:
« Medical Diagnostic: Reduce FN is critical (Don't miss sick patient) [Recall]
« Spam Detection: Reducing FP is critical (Don’t block genuine mail) [Precision]
« Credit Fraud: FN & FP crifical (No loss vs customer card not block) [F1 Score]
« Rain Prediction: FN (Farmer may lose crop) or FP (Trip Cancellation)

« Security System for terrorist fact detection: FN critical
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;
Support vector

Optimal Hyperplane
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SVM

Find best boundary between the classes
Find Hyperplane that separates class with maximum margin

Terms:

« Hyperplane: Decision boundary separating the class

* Margin: Distance between hyperplane & nearest point (Support Vector)
« Support Vector: Data point closes to Hyperplane

Advantage:

« Works well with high-dimensional space

« Works well with clear margin of separation

Disadvantage:

« Sensitive to noisy data / overlapping class
« Computationally expensive for large dataset
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Algorithm

ldentify the Support Vectors. Data points closest to data point of another
class

ldentify the equation of hyperplane such that this plane will have
maximum distance with Support Vectors identifies

If there are multiple support vectors finding equation of hyperplane is like
regression of their midpoint

On training evaluate a point with hyperplane equation and assign label

according to axl + byl + ¢ >0 or less
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Non — Linear Boundary

Decision surface

@ kotarabindra.com.np
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Kernel Trick

« Sometimes classes are not linearly separable in original space.

Kernel Trick:
« Map input data into higher-dimensional space
« Allows linear separation in that space without explicitly computing coordinates

Common Kernels:
« Linear: No mapping, original feature space
« Polynomial: Non-linear boundaries (degree d)
« RBF (Gaussian): Infinite-dimensional space, flexible boundary
« Sigmoid: Similar to neural network activation

Benefits:
« Allows SYM to handle non-linear classification problems
« Keeps computation efficient via kernel functions
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Hyper Parameter

 Parameter: Learned from data (e.g., support vectors)
« Hyperparameter: Set before fraining, controls model behavior

C (Regularization):
« Small C —- Wide margin, more misclassifications allowed (underfitting)
« Large C — Narrow margin, fewer misclassifications (overfitting)

Kernel type: linear, poly, rbf, sigmoid
Gamma (for RBF / poly):
« Small gamma — smooth decision boundary

 Large gamma — more complex boundary

Degree (for@gaolynomiol kernel)
Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkotarabindra.com.np
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Classification Code

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, classification_report
Import seaborn as sns

iris = load_iris()
X,y =irs.datq, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

svm_model = SVC(kernel="rbf', C=1, gamma='scale’)
svm_model.fit(X_tfrain, y_tfrain)
y_pred = svm_model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

sns.neatmap(cm, annot=True, Imt="d", xticklabels=iris.target_names, yticklabels=iris.target_names,
cmap="Blues")

plt.xlabel("Predicted"); plt.ylabel("Actual’); plt.title("Confusion Mairix (Iris Dataset)”); plt.show()

pl’lﬂT(C|OSSIfICOTI8I’hO%ﬁ)r§)CIj’r STOG}:S) gropregly,ri‘h Uggmg&grs@’rgﬁg\gﬁé r(ﬁl_)%?l)&es | sapkotarabindra.com.np
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Linear Regression

Regression
line

A
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Goal = Minimize Error

1. Find the residual or error. (Error € = Ypred - Yactual)
2. Sum of error = sum(ei)

3. If the equation of lineis Yp = bl1X + bo

1. The Goal: Minimize Error

Our objective is to minimize the Sum of Squared Residuals (SSR).

SSR =3(Y; - Y;)? = (Vi — Bo — AuXs)?

2. Derivative for the Intercept {3[.}

We take the partial derivative of the SSR with respect to 1'1! and set it to zero.

JSSR _ o (v _ A 3 Y
ﬁ—ﬂl —2 E[}z — P — .J'I}Lz_} 0

This simplifies to our first normal equation:

2. Y= nfo + B 3. X,
| WiL) Slides | sapkotarabindra.com.np
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Goal = Minimize Error

3. Derivative for the Slope Hl]

Next, we take the partial derivative of the SSR with respect to ?"1 and set it to zero.

dS5R & I AL 5 A L -
= = -2 E .}11[13 — ,.'_'J'{] — ..'J_]__.}iij =3\

If?."j|
This simplifies to our second normal equation:

YNXYi=B Y Xi+HY X2

Solving the two normal equations simultaneously gives us the final formulas for our estimators.

Slope {Eil}:

Y (X=X)(Y.-Y)

PLE TS -X)

Intercept {,.i:i‘[}]:

IE[} = 1_'- — Ili-:il_.i‘-

) Slides | sapkotarabindra.com.np
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Goal = Minimize Error

. Solve (1) for &y:

ndy = Zya - B X r = By= it T
i i

- Substitute J; into (2):

(¥ — 5 T) Zl’x + 3 X CHES E Y-

- Replace } . x; = n¥:

e = 2
gnz - fEnz + 43 22 =Y 2. XY =B Xi+ 1) X
i i
. Collect terms containing &, on left:

pr( Xt - na?) = e~ naw.
i i

. Solve for #;:
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Python Code

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd

housing = fetch_california_housing()

X = pd.DataFrame (housing.data, columns=housing.feature_names)

y = housing.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform (X_train)

X_test_scaled = scaler.transform (X_test)

model = LinearRegression()
model.fit(X_train_scaled, y_train)

y_pred = model.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)
r2 =r2_score(y_test, y_pred)

print("Mean Squared Error:", mse)
print('R? Score:", r2)

coefficients = pd.DataFrame({'Feature": housing.feature_names, "Coefficient": model.coef_})

PG S © Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkofarabindra.com.np
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Cross - Validation

 Model performance is dependent in a way data is split

 Solution: cross-validation.

« Split data into n group. Hold one and train on other. Repeat process
« Using more folds can be computationally expensive

« Stores result of R2 value in an array.

* SCOrINg: precision, recall, f1, accuracy, roc_auc, neg_mean_squared_error, ..

Example:

from sklearn.model selection import cross val score
cv_result = cross_val score(model, X, y, cv=5) # 5-fold cv
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Logistic Regression

« Used for classification problem

« |t outputs a probability using activation functions

« |fp>.5then predicted as 1 else predicted as 0

* |f we set threshold, p=0 then all will be predicted True

« ROC (Receiver Operating Characteristics) curve shows how well classifier
works for different threshold

« For each threshold, calculate FPR , TPR and plotf FPR vs TPR in graph

X-axis = FPR how often the model says “yes” when it should have said “no.”
Y-axis = how/rabiefidb@ e de)carmeedlyisaysayms (M Nsaek rea@lbyis oy es:a.com.np
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Activation Function

« Logistic Regression always uses sigmoid activation function

* For multi-class, it uses SoftMax activation function

softmax(z;) =

Sigmoid Curve
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from
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Logistic Regression

sklearn.metrics import roc_curve

sklearn.model selection import train_ test split
sklearn.linear_model import LogisticRegression
sklearn import datasets

rt matplotlib.pyplot as plt

st _cancer = datasets.load breast cancer()

breast cancer.data

breast_cancer.target

ain, X _test, y train, y test = train_test split(X, y, stratify=y,
om_state=42)

eg = LogisticRegression(max_iter=10000)

eg.fit(X_train, y_train)

mpute predicted probabilities
ed prob = logreg.predict_proba(X_test)[:, 1]
tpr, thresholds = roc_curve(y_test, y pred _prob)

plot dotted diagonal line

plot([@, 1], [0, 1], "k--°“, label=“Random Guess®)
plot(fpr, tpr, label="Logistic Regression")
xlabel("False Positive Rate")

.ylabel("True Positive Rate")
.title("Logistic Regression ROC curve")

show() @ Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkotarabindra.com.np
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Area Under Curve

from sklearn.meftrics import roc_auc_score

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.linear_model import LogisticRegression

from sklearn import datasets

breast_cancer = datasets.load_breast_cancer()

X = breast_cancer.data

y = breast_cancer.target

X_train, X_test, y_train, y_test = tfrain_test_split(X, y, stratify=y)

# Did Not converge on default iteration rate
logreg = LogisticRegression(max_iter=10000)
logreg.fit(X, y)

# Compute predicted probabilities
y_pred_prob = logreg.predict_proba(X_test)[:, 1]

print("AUC: {}".format(roc_auc_score(y_test, y_pred_prob)))
cv_auc = cross_val_score(logreg, X, y, cv=5, scoring="roc_auc")
print("Cross validation score {}'.format(cv_auc))
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Tuning Hyperparameter

« Parameters like:
« ainlasso and ridge
 kinknn
« max_iter in logistic regression

« Hyperparameter can'’t be learned by fitfing a model

« Choosing a hyperparameter
* Try a bunch of different hyperparameter value
« fit them separately
« See how well each parameter performs
« Choose best performing one
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Grid Search Cross Validation

For hyperparameter, validation is done for all combination
Computationally expensive but guaranteed o give best model
Based on performance choose hyperparameter that gives best result

Parameter values to try has to be passed as dictionary
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Randomized Search CV

Doesn’t try to fit for each combination of hyperparameter
It can jump values on grid

Used to same computation time

Same code can be used for Python

Instead of GridSearchCV use RandomizedSearchCV
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Ensemble Learning

« Combine multiple model to improve robustness and accuracy

Bagging
« Trains the same algorithm on random set of data and average
« Example: BaggingClassifier, RandomForestClassifier

Stacking:
« Combine multiple models independently into a meta model
« Example: StackingClassifer

Boosting:

« Train model sequentially, new model focus on correcting mistake of previous one
 Forweak learner

« Example: AdaBoostClassifier, GradientBoostingClassifier, XGBoost
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Bagging Classifier

from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# Load data
X,y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Base model
knn = KNeighborsClassifier(n_neighbors=11)

# Bagging ensemble
bagging_knn = BaggingClassifier(estimator=knn, n_estimators=50, random_state=42)
bagging_knn.fit(X_train, y_train)

# Evaluate
y_pred = bagging_knn.predict(X_test)

print(‘Bagging @Mﬁ%ﬁ@%@kg&fYrﬁﬁ%ﬁ%%&@%%dyté)&?ﬂHg (ML) Slides | sapkotarabindra.com.np
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Stacking Classifier

from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data
X,y = load_iris(return_X_y=True)
X_train, X_test, y_frain, y_test = frain_test_split(X, y, test_size=0.2, random_state=42)

# Define base learners

base_learners = |
("knn", KNeighborsClassifier(n_neighbors=11)),
("svm", SVC(probability=True)),
("tree", DecisionTreeClassifier()),

]

# Meta-model
meta_model = LogisticRegression()

# Stacking

stack = StackingClassifier(estimators=base_learners, final_estimator=meta_model, cv=5)
stack.fit(X_train, y_train)

print(*Stacking ACCHPRUIMINGIISERkSTY -BSthon Supervised Learning (ML) Slides | sapkotarabindra.com.np
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Boosting

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data
X,y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Weak learner
tree = DecisionTreeClassifier(max_depth=1) # decision stump

# Boosting

boost = AdaBoostClassifier(
estimator=tree,
n_estimators=50,
learning_rate=1.0,
random_state=42

)

boost.fit(X_train, y_frain)
y_pred = boost.predict(X_test)
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Encoding

Scikit learn doesn’'t accept categorical feature

Categorical features has 1o be encoded numerically

Convert data to dummy variables.

Some common encoding tfechniques are:

Label Encoding

One-Hot E

Binary Enc

ncoding

oding

Target Mean Encoding

Frequency / Count Encoding

Embeddin
© Ra
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Label Encoding

Each category is assigned an integer value.
Example: ["red”, “blue”, “green”] = [2, 0, 1]
Useful for ordinal data where order matters

Can mislead for nominal data as model may assume numeric relationships
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One - Hot Encoding

Creates a binary column for each category

Example: ["red”, “blue”, “green”] 2
red blue green

1 0 O
O O
O O

Works well for nominal data

Downside: Creates many columns if category are numerous
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Binary Encoding

Binary Encoding

 First convert categories into integers, then into binary

« Afterits separated into multiple columns (of binary digif)

« Example: “red” = 1 2 01; “blue” 2> 2 2> 10; “Green” > 3> 11
 More compact that One Hot Encoding

« Works well for high cardinality feature
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Other Encoding

Target Mean Encoding

« Replace categories with the mean of target variable for each
« Example: if target is purchasing probability
« Gender: female 2 0.6; male = 0.4;

Frequency Encoding

« Replace categories with their frequency or count
« Works well with high cardinality feature
« City: "London" (1000 fimes), "Paris" (500 times) — 1000, 500

Embedding (For Deep Learning)

« Represent category in dense vector space
« Used in NLP and recommendation system
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Python Code

© Rabindra Sapkota | Python Supervised Learning (ML) Slides |
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Pipeline

« We have multiple steps on fraining of ML algorithm
« Instead of doing fit and fransform in each we combine these steps

as a pipeline and use it for train or predict
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Save Model

« Affer model has been completed we need 1o store model
« Saving and importing model ensure that we don't run info same
long running and fime-consuming fraining process again

 We make use of joblib library for it

Example

import joblib

joblib.dump(model, “model_name.pkl”)
loaded_model = joblib.load(" model_name.pkl)

© Rabindra Sapkota | Python Supervised Learning (ML) Slides | sapkofarabindra.com.np
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