OOP

Concept
class vs object

OOP principle

Initializing with __init_
Inheritance: single, multiple, multilevel
Polymorphism & Operator overloading

Function overriding & Encapsulation
© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

OOP

If | had to write code to create FIFA game with
function-based approach, | need to make use of
complex data structure

With OORP it's easier to model real world problem

Class based approach is easier as | can create a blue-
porint, add method and attribute to It

Analogy: Variable = Attribute, Function = Method

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Class

Blueprint of object

Allows programmers 1o create user defined data type that have
cerftain attributes and functions

On taking analogy class Is datatype and object is variable
Property (data) of class is stored as affributes

Methods are things object can do

Example: Mario Villian, FIFA game Player, Student

Attribute: Name, DOB, Country, Dribble rating

Methods: Rest, Do Project, Learn, Dribble, Tackle

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Object

Instance of each Class
Multiple objects can be generated using a single class
Example: Each villain in Mario, specific play in FIFA,

Specific Student of institute

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

OOP Principle

Inheritance
Polymorphism
Encapsulation

Abstraction

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Defining Class

class People:
species = ‘mammals’ # class attribute

def __init__(self, name, age, country=‘Nepal’). # constructor
self.name = name # self keyword
self.age = age # object attribute
self.country = country # with default argument

def greeft(self):
print(f"Hello {self.name} from {self.country}”)

p_1 =People(‘a’, 30)

p_2 =People(‘b’, 25, ‘US’)
p_l.greet()

p_2.greet()

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Constructor

« Use to initialize the object
e Definedin Init function

« Automatically invoked on inifialization

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Inheritance

« Child class derive properties and method from parent
« Single (A = B), Multiple (A, B) > C, Multilevel (A 2> B 2> C)

class People:
def __init__(self, name, dob,):
self.name = name
self.dob = datetime.strptime (dob, "%Y-%m-%d").date()

@property
def age(self):
return (date.today() - self.dob).days // 365

def is_adult(self):
return self.age >= 18

class Player(People). # Student can also inherit it but instead of sport there might be course
def __init__(self, name, dob,, sport):
People.__init__(self, name, dob,) # self required on initializing with name

self.sport = sport © Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

__ Polymorphism

def __init__(self, name):
self.nhame = name

def speak(self):
return f"Mero nam {self.name} ho"

class American:

def _il?i’r_(self_, name): SO me fU ﬂ CTIO ﬂ
ot wosksai behaving q|fferen’rly
return "My name in {self.name}” L DU C |< Typlng

def talk(obj):
print(obj.speak())

p_1 = Nepali(‘Hari’)
p_2 = American(‘Harry’)
talk(p_1)

talk(p_2
P-2) © Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Method Overwriting

class People:
def __init__(self, name):
self.name = name

def speak(self):
return "My name in {self.name}”

class Nepali(People):
def __init__(self, name):
self.nhame = name

def speak(self):
return f"Mero nam {self.name} ho"

p_1 = Nepali(‘Hari’")

p_2 = American(‘Harry’)
print(p_1.speak())
print(p_2.speak())

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Operator Overloading

class People:
def __init__(self, name, age):
self.nhame = name
self.age = age

def __str__ (self):
return f'{self.name}"

def __gt_ (self, other):
return self.age > other.age

p_1 = People("Hari", 20)
p_2 = People("Harry", 20)

ifp_1>p_2:
print(f'{p_1} is greater")
elifp_2>p_1:
print(f'{p_2} is greater")
else:

print(f'{o_1} and {p_2} are equal’) . _
© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Operator Notation

Function/operator
Subtract and assign _“
e | |
I R
ower | | wem
oo | 7| _wom
oo || _wn
oo || o
BN R
T T R

es | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Operator Notation

B T
Bitwise not __invert__
TN B R S
v | = | e
T R
omae | |

I N RS
ot | | e
I N
e

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Encapsulation

Bundle method & data operafing within class.
Attribute of class is made private using
No direct access from outer program

Data is accessed via special function called getter & setter

No friend class like C++

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Encapsulation

class Book:
def __init__(self, name, author):
self.name = name

self. author = author

def get_author(self):

return self._ _author

b_1 = Book('Rich Dad Poor Dad’, 'Robert Kiyosaki')

print(b_1.name) # Gives data
print(b_1.__author) # Says not present
b 1 ="Hacked'

print(b_1.name)

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Name Mangling

« Technigue to access the private data of the object

« obj._ClassName__field

class Book:
def __init__(self, name, author):
self. _ name = name

self. _author = author

b_1 = Book('Rich Dad Poor Dad', 'Robert Kiyosaki’)

print(lb_1._Book__name)

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Abstraction

« Hiding complex implementation detail and showing only
essential feature

* Instring we don't know how .lower() works but we know it exist
and convert data to lowercase

Abstract class

« Class with at least one abstract method

« Cannoft be initiated.

« Child must implement abstract method on it
* No logic only definition on parent

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

from abc import ABC, abstractmethod

class Shape(ABC): # Inherit ABC class
@abstractmethod
def areq(self):
PAss

@albstractmethod
def perimeter(self):
PASS

class Square(Shape):
def __init__(self, side):
self.side = side

def areq(self):
return self.side ** 2

sqr = Square(4) # Error as perimeterisn’t implemented
area = Square.aredq()

print(area) , , ,
© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

Exerclse

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

https://sapkotarabindra.com.np/

	Slide 1: OOP
	Slide 2: OOP
	Slide 3: Class
	Slide 4: Object
	Slide 5: OOP Principle
	Slide 6: Defining Class
	Slide 7: Constructor
	Slide 8: Inheritance
	Slide 9: Polymorphism
	Slide 10: Method Overwriting
	Slide 11: Operator Overloading
	Slide 12: Operator Notation
	Slide 13: Operator Notation
	Slide 14: Encapsulation
	Slide 15: Encapsulation
	Slide 16: Name Mangling
	Slide 17: Abstraction
	Slide 18
	Slide 19: Exercise

