
sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

OOP
• Concept

• class vs object

• OOP principle

• Initializing with __init__

• Inheritance: single, multiple, multilevel

• Polymorphism & Operator overloading

• Function overriding & Encapsulation

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

OOP

• If I had to write code to create FIFA game with

function-based approach, I need to make use of

complex data structure

• With OOP it's easier to model real world problem

• Class based approach is easier as I can create a blue-

print, add method and attribute to it

• Analogy: Variable ➔ Attribute, Function ➔ Method

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Class
• Blueprint of object

• Allows programmers to create user defined data type that have

certain attributes and functions

• On taking analogy class is datatype and object is variable

• Property (data) of class is stored as attributes

• Methods are things object can do

• Example: Mario Villian, FIFA game Player, Student

 Attribute: Name, DOB, Country, Dribble rating

 Methods: Rest, Do Project, Learn, Dribble, Tackle

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Object

• Instance of each Class

• Multiple objects can be generated using a single class

• Example: Each villain in Mario, specific play in FIFA,

Specific Student of institute

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

OOP Principle

Inheritance

Polymorphism

Encapsulation

Abstraction

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Defining Class
class People:

 species = ‘mammals’ # class attribute

 def __init__(self, name, age, country=‘Nepal’): # constructor

 self.name = name # self keyword

 self.age = age # object attribute

 self.country = country # with default argument

 def greet(self):

 print(f”Hello {self.name} from {self.country}”)

p_1 = People(‘a’, 30)

p_2 = People(‘b’, 25, ‘US’)

p_1.greet()

p_2.greet()

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Constructor

• Use to initialize the object

• Defined in __init__ function

• Automatically invoked on initialization

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Inheritance
• Child class derive properties and method from parent
• Single (A → B), Multiple (A, B) → C, Multilevel (A → B → C)

class People:

 def __init__(self, name, dob, …..):

 self.name = name
 self.dob = datetime.strptime(dob, "%Y-%m-%d").date()

 @property

 def age(self):

 return (date.today() – self.dob).days // 365

 def is_adult(self):

 return self.age >= 18

class Player(People): # Student can also inherit it but instead of sport there might be course
 def __init__(self, name, dob, ….., sport):

 People.__init__(self, name, dob, …..) # self required on initializing with name

 self.sport = sport

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Polymorphism
class Nepali:

 def __init__(self, name):

 self.name = name

 def speak(self):

 return f”Mero nam {self.name} ho”

class American:

 def __init__(self, name):

 self.name = name

 def speak(self):

 return f”My name in {self.name}”

def talk(obj):

 print(obj.speak())

p_1 = Nepali(‘Hari’)

p_2 = American(‘Harry’)

talk(p_1)

talk(p_2)

Same function

behaving differently

– Duck Typing

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Method Overwriting
class People:

 def __init__(self, name):

 self.name = name

 def speak(self):

 return f”My name in {self.name}”

class Nepali(People):

 def __init__(self, name):

 self.name = name

 def speak(self):

 return f”Mero nam {self.name} ho”

p_1 = Nepali(‘Hari’)

p_2 = American(‘Harry’)

print(p_1.speak())

print(p_2.speak())

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Operator Overloading
class People:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name}"

 def __gt__(self, other):

 return self.age > other.age

p_1 = People("Hari", 20)

p_2 = People("Harry", 20)

if p_1 > p_2:

 print(f"{p_1} is greater")

elif p_2 > p_1:

 print(f"{p_2} is greater")

else:

 print(f"{p_1} and {p_2} are equal")

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Operator Notation

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Operator Notation

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Encapsulation

• Bundle method & data operating within class.

• Attribute of class is made private using __

• No direct access from outer program

• Data is accessed via special function called getter & setter

• No friend class like C++

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Encapsulation
class Book:

 def __init__(self, name, author):

 self.name = name

 self.__author = author

 def get_author(self):

 return self.__author

b_1 = Book('Rich Dad Poor Dad', 'Robert Kiyosaki')

print(b_1.name) # Gives data

print(b_1.__author) # Says not present

b_1 = 'Hacked'

print(b_1.name)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Name Mangling

class Book:

 def __init__(self, name, author):

 self.__name = name

 self.__author = author

b_1 = Book('Rich Dad Poor Dad', 'Robert Kiyosaki’)

print(b_1._Book__name)

• Technique to access the private data of the object

• obj._ClassName__field

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Abstraction

• Hiding complex implementation detail and showing only

essential feature

• In string we don’t know how .lower() works but we know it exist

and convert data to lowercase

Abstract class

• Class with at least one abstract method

• Cannot be initiated.

• Child must implement abstract method on it

• No logic only definition on parent

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

from abc import ABC, abstractmethod

class Shape(ABC): # Inherit ABC class

 @abstractmethod

 def area(self):

 pass

 @abstractmethod

 def perimeter(self):

 pass

class Square(Shape):

 def __init__(self, side):

 self.side = side

 def area(self):

 return self.side ** 2

sqr = Square(4) # Error as perimeter isn’t implemented

area = Square.area()
print(area)

https://sapkotarabindra.com.np/

sapkotarabindra.com.np

© Rabindra Sapkota | Python OOP Slides | sapkotarabindra.com.np

Exercise

https://sapkotarabindra.com.np/

	Slide 1: OOP
	Slide 2: OOP
	Slide 3: Class
	Slide 4: Object
	Slide 5: OOP Principle
	Slide 6: Defining Class
	Slide 7: Constructor
	Slide 8: Inheritance
	Slide 9: Polymorphism
	Slide 10: Method Overwriting
	Slide 11: Operator Overloading
	Slide 12: Operator Notation
	Slide 13: Operator Notation
	Slide 14: Encapsulation
	Slide 15: Encapsulation
	Slide 16: Name Mangling
	Slide 17: Abstraction
	Slide 18
	Slide 19: Exercise

